3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
Convolutional networks are the de-facto standard for analyzing spatio-temporal data such as images, videos, and 3D shapes. Whilst some of this data is naturally dense (e.g., photos), many other data sources are inherently sparse. Examples include 3D point clouds that were obtained using a LiDAR scan...
Uložené v:
| Vydané v: | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition s. 9224 - 9232 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.06.2018
|
| Predmet: | |
| ISSN: | 1063-6919 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Convolutional networks are the de-facto standard for analyzing spatio-temporal data such as images, videos, and 3D shapes. Whilst some of this data is naturally dense (e.g., photos), many other data sources are inherently sparse. Examples include 3D point clouds that were obtained using a LiDAR scanner or RGB-D camera. Standard "dense" implementations of convolutional networks are very inefficient when applied on such sparse data. We introduce new sparse convolutional operations that are designed to process spatially-sparse data more efficiently, and use them to develop spatially-sparse convolutional networks. We demonstrate the strong performance of the resulting models, called submanifold sparse convolutional networks (SS-CNs), on two tasks involving semantic segmentation of 3D point clouds. In particular, our models outperform all prior state-of-the-art on the test set of a recent semantic segmentation competition. |
|---|---|
| AbstractList | Convolutional networks are the de-facto standard for analyzing spatio-temporal data such as images, videos, and 3D shapes. Whilst some of this data is naturally dense (e.g., photos), many other data sources are inherently sparse. Examples include 3D point clouds that were obtained using a LiDAR scanner or RGB-D camera. Standard "dense" implementations of convolutional networks are very inefficient when applied on such sparse data. We introduce new sparse convolutional operations that are designed to process spatially-sparse data more efficiently, and use them to develop spatially-sparse convolutional networks. We demonstrate the strong performance of the resulting models, called submanifold sparse convolutional networks (SS-CNs), on two tasks involving semantic segmentation of 3D point clouds. In particular, our models outperform all prior state-of-the-art on the test set of a recent semantic segmentation competition. |
| Author | Engelcke, Martin Graham, Benjamin Maaten, Laurens van der |
| Author_xml | – sequence: 1 givenname: Benjamin surname: Graham fullname: Graham, Benjamin – sequence: 2 givenname: Martin surname: Engelcke fullname: Engelcke, Martin – sequence: 3 givenname: Laurens van der surname: Maaten fullname: Maaten, Laurens van der |
| BookMark | eNotjstOwzAURA0CiVKyZsEmP5BwHT_vEgVakCpABNhWjmODIXWqJKXi7wmC1Yx0RkdzSo5iFx0h5xRySgEvy9fHp7wAqnMAlPSAJKg0FUxLyQvAQzKjIFkmkeIJSYbhAwAKqZnmYkaW7Dqt3MbEMdipvG1cHM0Yupjuw_ieVrt6YsF3bZNWW9MPLi27-NW1u9-NadN7N-67_nM4I8fetINL_nNOXhY3z-VttnpY3pVXqyxQJcZM8EKhReYtd2C9VzU1ijNfoK-1mW5J5lkDaEFZUdeOS6mc4opzbWvbIJuTiz9vcM6tt33YmP57rYVCEMh-AKOATro |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2018.00961 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781538664209 1538664208 |
| EISSN | 1063-6919 |
| EndPage | 9232 |
| ExternalDocumentID | 8579059 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i175t-54279c93fc4e0cff7b1a743f29fb8a02663f3d09c07c5bbe4667e747448cbcd93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1347 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457843609041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-54279c93fc4e0cff7b1a743f29fb8a02663f3d09c07c5bbe4667e747448cbcd93 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_8579059 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Jun |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002683845 ssj0003211698 |
| Score | 2.636467 |
| Snippet | Convolutional networks are the de-facto standard for analyzing spatio-temporal data such as images, videos, and 3D shapes. Whilst some of this data is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 9224 |
| SubjectTerms | Convolution Convolutional codes Image segmentation Memory management Semantics Stationary state Three-dimensional displays |
| Title | 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks |
| URI | https://ieeexplore.ieee.org/document/8579059 |
| WOSCitedRecordID | wos000457843609041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED4B6tCJtlC19CEPHZuS4ODHTEs7IdSX2FDsnCskCIjX7-85sWDp0s2OZMX5HNv3-O4O4MGvsXRJGnkOTZTaXEaZyUSkshRNqpBzVGWxCTkaqclEj2vweIiFQcSSfIZPvln68vOl3XlTWVf1fTopXYe6lKKK1TrYU3pCcRU8ZL7PSbMRWoVsPkmsu4Pv8bvncnnypC6TYh_LqZS3ybD5v3mcQfsYlsfGhwvnHGpYXEAzyJEs7NJNC175M_vABWE2s9T4WYT4ooJ5qyujs8InvXDLOQ1akWKLjF6wD_9gNmejihq-acPX8OVz8BaFggnRjKSAbdRPe1JbzZ1NMbbOSZNkJCG4nnZGZQSR4I7nsbaxtH1jMBVCIukTpKJZY3PNL6FRLAu8AsazBJG-xwnvp-TOOBpEG5ZOw0Qol19Dy-MyXVU5MaYBks7fj2_g1ANfUaxuobFd7_AOTux-O9us78uF_AUQR58t |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKQYKpQIt444GR0CR2HHsulCJKVEFB3arEOaNKfamv3885sdqFhc2JZCW5i-17fPcdIfdWx7EJuGcxNB7XeeylWSo8mXLIuATGQBbNJuIkkYOB6lXIw7YWBgAK8Bk82mGRy89nem1DZU0ZWToptUf2I85Dv6zW2kZUQiGZdDkye83QtxFKOj6fwFfN1nfvw6K5LHxSFbTYu4YqxXnSrv3vTY5JY1eYR3vbI-eEVGB6SmrOkqRunS7r5IU90U-YoNRGGgc_E1dhNKU27kpxt7C0F2Y2xklzdG2B4gM27i9MxzQpweHLBvlqP_dbHc-1TPBGaAesvIiHsdKKGc3B18bEWZCijWBCZTKZoogEMyz3lfZjHWUZcCFiQI8CnTSd6VyxM1KdzqZwTihLAwD8HiNsppKZzOAkXLK4HwZCmvyC1K1chvOSFWPoRHL59-07ctjpv3eH3dfk7YocWSWUgKtrUl0t1nBDDvRmNVoubgul_gKGwKJ0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=3D+Semantic+Segmentation+with+Submanifold+Sparse+Convolutional+Networks&rft.au=Graham%2C+Benjamin&rft.au=Engelcke%2C+Martin&rft.au=Maaten%2C+Laurens+van+der&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=9224&rft.epage=9232&rft_id=info:doi/10.1109%2FCVPR.2018.00961&rft.externalDocID=8579059 |