A one-layer discrete-time projection neural network for support vector classification
This paper presents a one-layer discrete-time projection neural network described by difference equations for real-time support vector classification (SVC). The SVC is first formulated as a convex quadratic programming problem, and then a recurrent neural network with one-layer structure is designed...
Uloženo v:
| Vydáno v: | 2014 International Joint Conference on Neural Networks (IJCNN) s. 3143 - 3148 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2014
|
| Témata: | |
| ISSN: | 2161-4393 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a one-layer discrete-time projection neural network described by difference equations for real-time support vector classification (SVC). The SVC is first formulated as a convex quadratic programming problem, and then a recurrent neural network with one-layer structure is designed for training the support vector machine. Furthermore, simulation results on two illustrative examples are given to demonstrate the effectiveness and performance of the proposed neural network. |
|---|---|
| ISSN: | 2161-4393 |
| DOI: | 10.1109/IJCNN.2014.6889398 |