Soft sensor design for a Sulfur Recovery Unit using a clustering based approach
In the paper a Soft Sensor design strategy for an industrial process, via neural NMA model, is described. A general design strategy, based on the automatic selection of regressors of a NMA model is proposed. It is based on the minimization of the cost function of a Gath Geva clustering algorithm. Th...
Uloženo v:
| Vydáno v: | 2008 IEEE Instrumentation and Measurement Technology Conference s. 1162 - 1167 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2008
|
| Témata: | |
| ISBN: | 9781424415403, 1424415403 |
| ISSN: | 1091-5281 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the paper a Soft Sensor design strategy for an industrial process, via neural NMA model, is described. A general design strategy, based on the automatic selection of regressors of a NMA model is proposed. It is based on the minimization of the cost function of a Gath Geva clustering algorithm. The obtained soft sensor will be implemented in a refinery in order to replace the measurement device during maintenance to guarantee continuity in the monitoring and control of the plant. |
|---|---|
| ISBN: | 9781424415403 1424415403 |
| ISSN: | 1091-5281 |
| DOI: | 10.1109/IMTC.2008.4547215 |

