ISAR Images Segmentation Based on Spatially Variant Mixture Multiscale Autoregressive Model

ISAR images segmentation play a key role for characteristic extraction, target recognition, and target surveillance. This paper proposes a novel segmentation method of Inverse synthetic aperture radar (ISAR) images, which employees a spatially variant mixture multiscale autoregressive (SVMMAR) model...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) s. 2170 - 2174
Hlavní autoři: Ju, Yanwei, Zhang, Yan, Guo, Feng
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2018
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ISAR images segmentation play a key role for characteristic extraction, target recognition, and target surveillance. This paper proposes a novel segmentation method of Inverse synthetic aperture radar (ISAR) images, which employees a spatially variant mixture multiscale autoregressive (SVMMAR) model to segment ISAR images. The estimation of parameters of the model is easily performed via least square estimation and expectation maximization algorithm (EM algorithm). Moreover, a kind of method for selecting number of classes at a coarser scale is proposed, which reduced computation amount greatly. In order to improve the performance, the method characterizes and exploits multiscale stochastic structure inherent in ISAR image. The advantage of our proposed segmentation approach is that it is not only fast, but also able to automatically estimate all the model parameters, and easy to implement. Therefore, the model can be exploited for ISAR automatic target recognition easily. All of that are demonstrated by the experimental results.
AbstractList ISAR images segmentation play a key role for characteristic extraction, target recognition, and target surveillance. This paper proposes a novel segmentation method of Inverse synthetic aperture radar (ISAR) images, which employees a spatially variant mixture multiscale autoregressive (SVMMAR) model to segment ISAR images. The estimation of parameters of the model is easily performed via least square estimation and expectation maximization algorithm (EM algorithm). Moreover, a kind of method for selecting number of classes at a coarser scale is proposed, which reduced computation amount greatly. In order to improve the performance, the method characterizes and exploits multiscale stochastic structure inherent in ISAR image. The advantage of our proposed segmentation approach is that it is not only fast, but also able to automatically estimate all the model parameters, and easy to implement. Therefore, the model can be exploited for ISAR automatic target recognition easily. All of that are demonstrated by the experimental results.
Author Guo, Feng
Ju, Yanwei
Zhang, Yan
Author_xml – sequence: 1
  givenname: Yanwei
  surname: Ju
  fullname: Ju, Yanwei
  email: juyanwei@126.com
  organization: Nanjing Research Institute of Electronics Technology, Nanjing, China
– sequence: 2
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: Army Engineering University of PLA, Nanjing, China
– sequence: 3
  givenname: Feng
  surname: Guo
  fullname: Guo, Feng
  organization: Nanjing Research Institute of Electronics Technology, Nanjing, China
BookMark eNotj8tKw0AYhUdQ0Na-gG7mBVrnflnGUjXQIhh146L8bf6UkVxKZiL27Q3Y1Tl8Bz44E3LZdi0ScsfZgnPmH_JslS0XgnG3cNpa6_gFmXAtnVGaWXNNZjF-M8aEcdJpdUO-8iJ7o3kDB4y0wEODbYIUupY-QsSSjqU4jgDq-kQ_oQ_QJroJv2nokW6GOoW4hxppNqSux0OPMYafcelKrG_JVQV1xNk5p-TjafW-fJmvX5_zZbaeB251mivtpXcCOKusK70yO69QaOv3BkSpuC-t1zsJ4IX1hutK2V3JKyOgklohyCm5__cGRNwe-9BAf9qe_8s_HKdS2Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IAEAC.2018.8577781
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538645076
9781538645079
9781538645093
1538645092
EndPage 2174
ExternalDocumentID 8577781
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-4593982a10f78d946b94e2579c6a2d419d795b3aa9279615f47bd1f62af354ea3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457576900429&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 13 06:23:01 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-4593982a10f78d946b94e2579c6a2d419d795b3aa9279615f47bd1f62af354ea3
PageCount 5
ParticipantIDs ieee_primary_8577781
PublicationCentury 2000
PublicationDate 2018-Oct.
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct.
PublicationDecade 2010
PublicationTitle 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)
PublicationTitleAbbrev IAEAC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683854
Score 1.6936301
Snippet ISAR images segmentation play a key role for characteristic extraction, target recognition, and target surveillance. This paper proposes a novel segmentation...
SourceID ieee
SourceType Publisher
StartPage 2170
SubjectTerms Computational modeling
Estimation
Image segmentation
Inverse synthetic aperture radar
ISAR images
least square estimation
Noise
Spatial resolution
Speckle
Stochastic processes
Surveillance
SVMMAR model
Target recognition
Title ISAR Images Segmentation Based on Spatially Variant Mixture Multiscale Autoregressive Model
URI https://ieeexplore.ieee.org/document/8577781
WOSCitedRecordID wos000457576900429&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvDotrtJNo_jWlosaClWpeChZJOJFPqQPkT_vcl2rQhezCGEQBIySWYyk_kyCF1ZGpLKI8ZynxlmIu0YRDHXThuXUOcKoPCd6PXkcKj6FXS9xcIAQOF8Bo1QLN7y7dysg6msKVMhRMBZ7wjBN1itrT2FcEllyr5xMbFqdrN21grOW7JRNvwVQaUQIJ39_w19gOo_SDzc38qYQ1SBWQ29dAfZA-5OPStY4gG8Tkv80AzfeJlksS-ESMN-Z00-8bNXhj318P34IzwW4AJxu_QrAzgL_xdAoXB7nodDWLRJHT112o-t26gMkhCNveRfRSxVVEmik9gJaRXjuWLgz6EyXBPLEmWFSnOqtSJC-euLYyK3ieNEO5oy0PQIVWfzGRwjTAxJKI-Jsblm0iltTOy7i23OLQATJ6gWCDN62_yDMSppcvp39RnaC7TfOL6do-pqsYYLtGve_SQXl8XifQEub5z_
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnpSacW3OXh0290ku0mOa2npYluKrVLwULJ5lEK7lT5E_73Jdq0IXswhDIEkZCaZyWO-DAB3CrvEU4-Q1GaSSE8Yoj0_EkZIE2BjcqBwh_Z6bDTi_RK432FhtNa585muOTJ_y1cLuXFXZXUWUkodznovJAT5W7TW7kYFRQyzkHwjY3xeT-Jm3HDuW6xWVP0VQyU3Ia2j_3V-DKo_WDzY31mZE1DSWQW8JoP4CSZzqwxWcKAn8wJBlMEHa5UUtISLNWzn1uwTvtjjsOUf7E4_3HMBzDG3KysbDWP3g4HOj9xW60EXGG1WBc-t5rDR9oowCd7U2v61R0KOOUMi8A1lipMo5UTblchlJJAiAVeUhykWgiPK7QbGEJqqwERIGBwSLfApKGeLTJ8BiCQKcOQjqVJBmOFCSt8256s0UloTeg4qjjHjt-1PGOOCJxd_F9-Cg_aw2xl3kt7jJTh0cti6wV2B8nq50ddgX77bAS9vckF-AYigoEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+3rd+Advanced+Information+Technology%2C+Electronic+and+Automation+Control+Conference+%28IAEAC%29&rft.atitle=ISAR+Images+Segmentation+Based+on+Spatially+Variant+Mixture+Multiscale+Autoregressive+Model&rft.au=Ju%2C+Yanwei&rft.au=Zhang%2C+Yan&rft.au=Guo%2C+Feng&rft.date=2018-10-01&rft.pub=IEEE&rft.spage=2170&rft.epage=2174&rft_id=info:doi/10.1109%2FIAEAC.2018.8577781&rft.externalDocID=8577781