ISAR Images Segmentation Based on Spatially Variant Mixture Multiscale Autoregressive Model
ISAR images segmentation play a key role for characteristic extraction, target recognition, and target surveillance. This paper proposes a novel segmentation method of Inverse synthetic aperture radar (ISAR) images, which employees a spatially variant mixture multiscale autoregressive (SVMMAR) model...
Uloženo v:
| Vydáno v: | 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) s. 2170 - 2174 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2018
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ISAR images segmentation play a key role for characteristic extraction, target recognition, and target surveillance. This paper proposes a novel segmentation method of Inverse synthetic aperture radar (ISAR) images, which employees a spatially variant mixture multiscale autoregressive (SVMMAR) model to segment ISAR images. The estimation of parameters of the model is easily performed via least square estimation and expectation maximization algorithm (EM algorithm). Moreover, a kind of method for selecting number of classes at a coarser scale is proposed, which reduced computation amount greatly. In order to improve the performance, the method characterizes and exploits multiscale stochastic structure inherent in ISAR image. The advantage of our proposed segmentation approach is that it is not only fast, but also able to automatically estimate all the model parameters, and easy to implement. Therefore, the model can be exploited for ISAR automatic target recognition easily. All of that are demonstrated by the experimental results. |
|---|---|
| AbstractList | ISAR images segmentation play a key role for characteristic extraction, target recognition, and target surveillance. This paper proposes a novel segmentation method of Inverse synthetic aperture radar (ISAR) images, which employees a spatially variant mixture multiscale autoregressive (SVMMAR) model to segment ISAR images. The estimation of parameters of the model is easily performed via least square estimation and expectation maximization algorithm (EM algorithm). Moreover, a kind of method for selecting number of classes at a coarser scale is proposed, which reduced computation amount greatly. In order to improve the performance, the method characterizes and exploits multiscale stochastic structure inherent in ISAR image. The advantage of our proposed segmentation approach is that it is not only fast, but also able to automatically estimate all the model parameters, and easy to implement. Therefore, the model can be exploited for ISAR automatic target recognition easily. All of that are demonstrated by the experimental results. |
| Author | Guo, Feng Ju, Yanwei Zhang, Yan |
| Author_xml | – sequence: 1 givenname: Yanwei surname: Ju fullname: Ju, Yanwei email: juyanwei@126.com organization: Nanjing Research Institute of Electronics Technology, Nanjing, China – sequence: 2 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: Army Engineering University of PLA, Nanjing, China – sequence: 3 givenname: Feng surname: Guo fullname: Guo, Feng organization: Nanjing Research Institute of Electronics Technology, Nanjing, China |
| BookMark | eNotj8tKw0AYhUdQ0Na-gG7mBVrnflnGUjXQIhh146L8bf6UkVxKZiL27Q3Y1Tl8Bz44E3LZdi0ScsfZgnPmH_JslS0XgnG3cNpa6_gFmXAtnVGaWXNNZjF-M8aEcdJpdUO-8iJ7o3kDB4y0wEODbYIUupY-QsSSjqU4jgDq-kQ_oQ_QJroJv2nokW6GOoW4hxppNqSux0OPMYafcelKrG_JVQV1xNk5p-TjafW-fJmvX5_zZbaeB251mivtpXcCOKusK70yO69QaOv3BkSpuC-t1zsJ4IX1hutK2V3JKyOgklohyCm5__cGRNwe-9BAf9qe_8s_HKdS2Q |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IAEAC.2018.8577781 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1538645076 9781538645079 9781538645093 1538645092 |
| EndPage | 2174 |
| ExternalDocumentID | 8577781 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-4593982a10f78d946b94e2579c6a2d419d795b3aa9279615f47bd1f62af354ea3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457576900429&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 13 06:23:01 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-4593982a10f78d946b94e2579c6a2d419d795b3aa9279615f47bd1f62af354ea3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8577781 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Oct. |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct. |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) |
| PublicationTitleAbbrev | IAEAC |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002683854 |
| Score | 1.6936301 |
| Snippet | ISAR images segmentation play a key role for characteristic extraction, target recognition, and target surveillance. This paper proposes a novel segmentation... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2170 |
| SubjectTerms | Computational modeling Estimation Image segmentation Inverse synthetic aperture radar ISAR images least square estimation Noise Spatial resolution Speckle Stochastic processes Surveillance SVMMAR model Target recognition |
| Title | ISAR Images Segmentation Based on Spatially Variant Mixture Multiscale Autoregressive Model |
| URI | https://ieeexplore.ieee.org/document/8577781 |
| WOSCitedRecordID | wos000457576900429&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvDotrtJNo_jWlosaClWpeChZJOJFPqQPkT_vcl2rQhezCGEQBIySWYyk_kyCF1ZGpLKI8ZynxlmIu0YRDHXThuXUOcKoPCd6PXkcKj6FXS9xcIAQOF8Bo1QLN7y7dysg6msKVMhRMBZ7wjBN1itrT2FcEllyr5xMbFqdrN21grOW7JRNvwVQaUQIJ39_w19gOo_SDzc38qYQ1SBWQ29dAfZA-5OPStY4gG8Tkv80AzfeJlksS-ESMN-Z00-8bNXhj318P34IzwW4AJxu_QrAzgL_xdAoXB7nodDWLRJHT112o-t26gMkhCNveRfRSxVVEmik9gJaRXjuWLgz6EyXBPLEmWFSnOqtSJC-euLYyK3ieNEO5oy0PQIVWfzGRwjTAxJKI-Jsblm0iltTOy7i23OLQATJ6gWCDN62_yDMSppcvp39RnaC7TfOL6do-pqsYYLtGve_SQXl8XifQEub5z_ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnpSacW3OXh0290ku0mOa2npYluKrVLwULJ5lEK7lT5E_73Jdq0IXswhDIEkZCaZyWO-DAB3CrvEU4-Q1GaSSE8Yoj0_EkZIE2BjcqBwh_Z6bDTi_RK432FhtNa585muOTJ_y1cLuXFXZXUWUkodznovJAT5W7TW7kYFRQyzkHwjY3xeT-Jm3HDuW6xWVP0VQyU3Ia2j_3V-DKo_WDzY31mZE1DSWQW8JoP4CSZzqwxWcKAn8wJBlMEHa5UUtISLNWzn1uwTvtjjsOUf7E4_3HMBzDG3KysbDWP3g4HOj9xW60EXGG1WBc-t5rDR9oowCd7U2v61R0KOOUMi8A1lipMo5UTblchlJJAiAVeUhykWgiPK7QbGEJqqwERIGBwSLfApKGeLTJ8BiCQKcOQjqVJBmOFCSt8256s0UloTeg4qjjHjt-1PGOOCJxd_F9-Cg_aw2xl3kt7jJTh0cti6wV2B8nq50ddgX77bAS9vckF-AYigoEY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+3rd+Advanced+Information+Technology%2C+Electronic+and+Automation+Control+Conference+%28IAEAC%29&rft.atitle=ISAR+Images+Segmentation+Based+on+Spatially+Variant+Mixture+Multiscale+Autoregressive+Model&rft.au=Ju%2C+Yanwei&rft.au=Zhang%2C+Yan&rft.au=Guo%2C+Feng&rft.date=2018-10-01&rft.pub=IEEE&rft.spage=2170&rft.epage=2174&rft_id=info:doi/10.1109%2FIAEAC.2018.8577781&rft.externalDocID=8577781 |