Continuous estimation of wrist torques with stack-autoencoder based deep neural network: A preliminary study
The continuous estimation of kinematics or kinetics from electromyography (EMG) signals is essential for intuitive control of prostheses and other human-machine interfaces based on bioelectrical signals. In this preliminary study, we concentrate on the continuous estimation of wrist torques under is...
Uloženo v:
| Vydáno v: | International IEEE/EMBS Conference on Neural Engineering (Online) s. 473 - 476 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.03.2019
|
| Témata: | |
| ISSN: | 1948-3554 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The continuous estimation of kinematics or kinetics from electromyography (EMG) signals is essential for intuitive control of prostheses and other human-machine interfaces based on bioelectrical signals. In this preliminary study, we concentrate on the continuous estimation of wrist torques under isometric contraction of three separate degrees-of-freedom (D-oFs) with a stack-autoencoder based deep neural network. With this kind of deep neural network, features used for regression could be extracted autonomously other than in hand-crafted manner. Five subjects participated in the experiment under a visual feedback guide interface, in which surface EMG signals and wrist torques were concurrently recorded. It is shown that a promising estimation performance is achieved in all three DoFs. The outcomes of this study demonstrate the feasibility of this method on continuous estimation of wrist torques and reveal the potential for further being extended into continuous and simultaneous myoelectric control. |
|---|---|
| AbstractList | The continuous estimation of kinematics or kinetics from electromyography (EMG) signals is essential for intuitive control of prostheses and other human-machine interfaces based on bioelectrical signals. In this preliminary study, we concentrate on the continuous estimation of wrist torques under isometric contraction of three separate degrees-of-freedom (D-oFs) with a stack-autoencoder based deep neural network. With this kind of deep neural network, features used for regression could be extracted autonomously other than in hand-crafted manner. Five subjects participated in the experiment under a visual feedback guide interface, in which surface EMG signals and wrist torques were concurrently recorded. It is shown that a promising estimation performance is achieved in all three DoFs. The outcomes of this study demonstrate the feasibility of this method on continuous estimation of wrist torques and reveal the potential for further being extended into continuous and simultaneous myoelectric control. |
| Author | Zhu, Xiangyang Yu, Yang Chen, Chen Sheng, Xinjun |
| Author_xml | – sequence: 1 givenname: Yang surname: Yu fullname: Yu, Yang organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Chen surname: Chen fullname: Chen, Chen organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Xinjun surname: Sheng fullname: Sheng, Xinjun organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Xiangyang surname: Zhu fullname: Zhu, Xiangyang organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China |
| BookMark | eNotkMtKAzEYRqMoWGv3gpu8wNRcJ4m7UuoFioLoumQmfzB2mtQkQ-nbW9DVWX0HvnONLmKKgNAtJXNKibl_Xb3PGaFmrhVtjaBnaGaUppLrVhlGyTmaUCN0w6UUV2hWyjchhDMiqNETNCxTrCGOaSwYSg07W0OKOHl8yKFUXFP-GaHgQ6hfuFTbbxs71gSxTw4y7mwBhx3AHkcYsx1OqIeUtw94gfcZhrAL0ebjaTq64w269HYoMPvnFH0-rj6Wz8367elluVg3gSpZGw4WtOiJJ8Rpa5gCUG1HmBTKs9YC9dQq53rnifDUOCud8rzrdG-kJIrxKbr78wYA2Ozz6VU-bv778F8GhF3j |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/NER.2019.8716941 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781538679210 1538679213 |
| EISSN | 1948-3554 |
| EndPage | 476 |
| ExternalDocumentID | 8716941 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-3eae84c0f00d8a927ee76b02547f26ae1f1a7ddcdf04f19da5d7f3bb8c9550723 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469933200117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:47:02 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-3eae84c0f00d8a927ee76b02547f26ae1f1a7ddcdf04f19da5d7f3bb8c9550723 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_8716941 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-March |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-March |
| PublicationDecade | 2010 |
| PublicationTitle | International IEEE/EMBS Conference on Neural Engineering (Online) |
| PublicationTitleAbbrev | NER |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003204198 |
| Score | 1.7333565 |
| Snippet | The continuous estimation of kinematics or kinetics from electromyography (EMG) signals is essential for intuitive control of prostheses and other... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 473 |
| SubjectTerms | Biological neural networks Electrodes Electromyography Estimation Training Wrist |
| Title | Continuous estimation of wrist torques with stack-autoencoder based deep neural network: A preliminary study |
| URI | https://ieeexplore.ieee.org/document/8716941 |
| WOSCitedRecordID | wos000469933200117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePCk0opvcvBobPaZjTeRFk-liEJvJY8JFMtuWXcr_nsz2VoRvHjKElgWZpKd5_cNITdWQxJpx1mc5palPuBg3ugJFhud5VgZVFCEYRNiOi3mcznrkdsdFgYAQvMZ3OFjqOXbyrSYKhuhcy8Rpb4nRN5htXb5lCTmqQ-gvyuRXI6m42ds3fJnoXvt1_yUYD4mh__78BEZ_uDw6GxnYY5JD8oBWSGh1LJsfchOkSKjwx7SytEPvLDUB9H4r6eYYaXe9zNvTLVNhYSVFmqKZstSC7CmyGWpVn4JneD39IGua1iFMV_1Jw3Es0PyOhm_PD6x7cwEtvSOQMMS8MJNDXec20LJWACIXCPkXbg4VxC5SAlrjXU8dZG0KrPCJVoXRiKzWZyckH5ZlXBKKKRGZM65DLTzihRaKS40gHQpxCpSZ2SAklqsO1qMxVZI539vX5ADVEbXvnVJ-k3dwhXZN5tm-V5fB11-AWo8pQI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jCnpS2cRvc_BoXdqmTetNZGPiLEMm7DaS5gWGYx21VfzvzUvnRPDiKSVQCu8lfZ-_3yPkSisIfWWYF_BYe9wGHJ41esILchXFWBmUkLhhEyLLkuk0HbfI9QYLAwCu-Qxu8NHV8nWR15gq66FznyJKfSviPGANWmuTUQkDxm0I_V2LZGkv6z9j85Y9Dc2LvyaoOAMy2Pvfp_dJ9weJR8cbG3NAWrDskAVSSs2XtQ3aKZJkNOhDWhj6gVeW2jAa__YUc6zUen_5qyfrqkDKSg0lRcOlqQZYUWSzlAu7uF7wW3pHVyUs3KCv8pM66tkueRn0J_dDbz01wZtbV6DyQrDi5TkzjOlEpoEAELFC0LswQSzBN74UWufaMG78VMtICxMqleQpcpsF4SFpL4slHBEKPBeRMSYCZawqhZKSCQWQGg6B9OUx6aCkZquGGGO2FtLJ39uXZGc4eRrNRg_Z4ynZRcU0zVxnpF2VNZyT7fy9mr-VF06vXydlqEk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+IEEE%2FEMBS+Conference+on+Neural+Engineering+%28Online%29&rft.atitle=Continuous+estimation+of+wrist+torques+with+stack-autoencoder+based+deep+neural+network%3A+A+preliminary+study&rft.au=Yu%2C+Yang&rft.au=Chen%2C+Chen&rft.au=Sheng%2C+Xinjun&rft.au=Zhu%2C+Xiangyang&rft.date=2019-03-01&rft.pub=IEEE&rft.eissn=1948-3554&rft.spage=473&rft.epage=476&rft_id=info:doi/10.1109%2FNER.2019.8716941&rft.externalDocID=8716941 |