Shape Completion Using 3D-Encoder-Predictor CNNs and Shape Synthesis
We introduce a data-driven approach to complete partial 3D shapes through a combination of volumetric deep neural networks and 3D shape synthesis. From a partially-scanned input shape, our method first infers a low-resolution - but complete - output. To this end, we introduce a 3D-Encoder-Predictor...
Uloženo v:
| Vydáno v: | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) s. 6545 - 6554 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2017
|
| Témata: | |
| ISSN: | 1063-6919, 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!