Hardware-Based Model of Node Clustering Using Q-Learning for Wireless Sensor Networks

Recent researches on the development and deployment of large-scale wireless sensor networks focus on the reduction of power consumption to increase network lifetime. This entails the development of more efficient hardware and the integration of the multiple components into a single platform; possibl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:TENCON ... IEEE Region Ten Conference s. 1673 - 1678
Hlavní autoři: Delos Santos Manarang, Gienel Francheska, Rodriguez Mina, Rusty John Lloyd, Reyes Salvador, Mikko Chino, Gusad De Leon, Maria Theresa, Jagunap Densing, Chris Vincent, Rosales, Marc Driz, Ballesil Alvarez, Anastacia
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2018
Témata:
ISSN:2159-3450
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Recent researches on the development and deployment of large-scale wireless sensor networks focus on the reduction of power consumption to increase network lifetime. This entails the development of more efficient hardware and the integration of the multiple components into a single platform; possibly, a system-on-a-chip sensor node platform. This paper focuses on the application of Q-learning to node clustering as an effective technique in reducing power consumption. A hardware implementation of CLIQUE, a Q-learning-based clustering algorithm that enhances the operation and resiliency of the network and improves the energy expenditure of the sensor nodes, is presented. The power consumption of the hardware is recorded to be around 6.4 mW. By incorporating this value into OMNeT++, it was demonstrated that CLIQUE improves energy expenditure by 6%-19% and extends network lifetime by 5%-22%, when compared to LEACH, a traditional clustering algorithm.
ISSN:2159-3450
DOI:10.1109/TENCON.2018.8650214