Multi-task Correlation Particle Filter for Robust Object Tracking

In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF) that takes the interdependencies among different features into account to learn correlation filters jointly. The proposed MCPF is designed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) S. 4819 - 4827
Hauptverfasser: Tianzhu Zhang, Changsheng Xu, Ming-Hsuan Yang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2017
Schlagworte:
ISSN:1063-6919, 1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF) that takes the interdependencies among different features into account to learn correlation filters jointly. The proposed MCPF is designed to exploit and complement the strength of a MCF and a particle filter. Compared with existing tracking methods based on correlation filters and particle filters, the proposed tracker has several advantages. First, it can shepherd the sampled particles toward the modes of the target state distribution via the MCF, thereby resulting in robust tracking performance. Second, it can effectively handle large-scale variation via a particle sampling strategy. Third, it can effectively maintain multiple modes in the posterior density using fewer particles than conventional particle filters, thereby lowering the computational cost. Extensive experimental results on three benchmark datasets demonstrate that the proposed MCPF performs favorably against the state-of-the-art methods.
AbstractList In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF) that takes the interdependencies among different features into account to learn correlation filters jointly. The proposed MCPF is designed to exploit and complement the strength of a MCF and a particle filter. Compared with existing tracking methods based on correlation filters and particle filters, the proposed tracker has several advantages. First, it can shepherd the sampled particles toward the modes of the target state distribution via the MCF, thereby resulting in robust tracking performance. Second, it can effectively handle large-scale variation via a particle sampling strategy. Third, it can effectively maintain multiple modes in the posterior density using fewer particles than conventional particle filters, thereby lowering the computational cost. Extensive experimental results on three benchmark datasets demonstrate that the proposed MCPF performs favorably against the state-of-the-art methods.
Author Tianzhu Zhang
Changsheng Xu
Ming-Hsuan Yang
Author_xml – sequence: 1
  surname: Tianzhu Zhang
  fullname: Tianzhu Zhang
– sequence: 2
  surname: Changsheng Xu
  fullname: Changsheng Xu
– sequence: 3
  surname: Ming-Hsuan Yang
  fullname: Ming-Hsuan Yang
BookMark eNpNjL1OwzAYAA0qEm1hZGLxCyR8juOfb6wiWpCKWlWFtbIdG7kNCXLcgbcHCQZuuZtuRib90HtC7hiUjAE-NG_bXVkBU6Vg1QWZMcG1hFqo-pJMGUheSGQ4-dfXZDaOR4CKqwqmZPFy7nIsshlPtBlS8p3Jcejp1qQcXefpMnbZJxqGRHeDPY-ZbuzRu0z3ybhT7N9vyFUw3ehv_zwnr8vHffNUrDer52axLiJTIhccwRmsK4nQSkAta8Q2CK295UxbGYRQAZS0KgjHuEOjINQK0AbTggI-J_e_3-i9P3ym-GHS10ED_iD4N0-WS0g
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2017.512
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 1538604574
9781538604571
EISSN 1063-6919
EndPage 4827
ExternalDocumentID 8099995
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-390ca942690d60986499df588eb318b6f557f076b7f5c13c9a70f4709bfad0703
IEDL.DBID RIE
ISICitedReferencesCount 341
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418371404096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6919
IngestDate Wed Aug 27 02:33:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-390ca942690d60986499df588eb318b6f557f076b7f5c13c9a70f4709bfad0703
PageCount 9
ParticipantIDs ieee_primary_8099995
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0003211698
Score 2.4608004
Snippet In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF)...
SourceID ieee
SourceType Publisher
StartPage 4819
SubjectTerms Benchmark testing
Computational efficiency
Correlation
Robustness
Target tracking
Visualization
Title Multi-task Correlation Particle Filter for Robust Object Tracking
URI https://ieeexplore.ieee.org/document/8099995
WOSCitedRecordID wos000418371404096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQNTgRbxlgdG3OZlOx5RRcWASlRB1a2yHVuqkFrUpPx-fEkaGFjYopsiX-J7ft8HcI8kUYkMHQ25i2gi84hqYRVVLOXa-PKHV62LxYuYzdLlUmYdeGixMNbaavnMjvCxmuXnW7PHVtk4xXRGsi50hRA1Vqvtp8S-kuGynSBEqL5STTp5TLkM5Q-_5niyyOa41CVGDIUof6mqVEFl2v_f65zA8AedR7I27pxCx27OoN-kk6T5WQtvOig2HGwDeKzwtrRUxQeZoC5HvQlHsuYDItM1Ts-Jz2TJfKv3RUleNXZqiI9pBrvqQ3ifPr1NnmkjokDXPjMoaSwDoyQCVoOcB0jGLmXuWJr6KjpMNXeMCRcIroVj3jdGKhG4RARSO5XjfXAOvc12Yy-AsEjFCcuD2GhkzZMK6edyY5NQIb5XXcIAD2n1WfNkrJrzufrbfA3H6IN69fUGeuVub2_hyHyV62J3Vzn3G7CSoTI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4QTfSECsZve_BoYV9t16MhEoyIC0HCjbRdmxATMGz4--27zeHBi7flvWzpu-39fJ4HoXsgiYqEb4nPbEAikQZEcSOJpDFT2pU_rGhdzEZ8PI7nc5E00EONhTHGFMtnpguXxSw_XesttMp6MaQzgu6hfXeDwC_RWnVHJXS1DBP1DCEA_ZVi1slCwoQvdgybvf4smcBaF-9SkKL8patShJVB638PdIw6O3weTurIc4IaZnWKWlVCiavPNXOmH82GH1sbPRaIW5LL7AP3QZmj3IXDSfUK4cES5ufY5bJ4slbbLMdvCno12EU1DX31DnofPE37Q1LJKJClyw1yEgpPSwGQVS9lHtCxC5FaGseujvZjxSyl3HqcKW6p844Wkns24p5QVqbwRzhDzdV6Zc4RpoEMI5p6oVbAmyckENCl2kS-BISvvEBtOKTFZ8mUsajO5_Jv8x06HE5fR4vR8_jlCh2BP8pF2GvUzDdbc4MO9Fe-zDa3haO_AUXWpHk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Multi-task+Correlation+Particle+Filter+for+Robust+Object+Tracking&rft.au=Tianzhu+Zhang&rft.au=Changsheng+Xu&rft.au=Ming-Hsuan+Yang&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=4819&rft.epage=4827&rft_id=info:doi/10.1109%2FCVPR.2017.512&rft.externalDocID=8099995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon