Multi-task Correlation Particle Filter for Robust Object Tracking
In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF) that takes the interdependencies among different features into account to learn correlation filters jointly. The proposed MCPF is designed to...
Gespeichert in:
| Veröffentlicht in: | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) S. 4819 - 4827 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.07.2017
|
| Schlagworte: | |
| ISSN: | 1063-6919, 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF) that takes the interdependencies among different features into account to learn correlation filters jointly. The proposed MCPF is designed to exploit and complement the strength of a MCF and a particle filter. Compared with existing tracking methods based on correlation filters and particle filters, the proposed tracker has several advantages. First, it can shepherd the sampled particles toward the modes of the target state distribution via the MCF, thereby resulting in robust tracking performance. Second, it can effectively handle large-scale variation via a particle sampling strategy. Third, it can effectively maintain multiple modes in the posterior density using fewer particles than conventional particle filters, thereby lowering the computational cost. Extensive experimental results on three benchmark datasets demonstrate that the proposed MCPF performs favorably against the state-of-the-art methods. |
|---|---|
| AbstractList | In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF) that takes the interdependencies among different features into account to learn correlation filters jointly. The proposed MCPF is designed to exploit and complement the strength of a MCF and a particle filter. Compared with existing tracking methods based on correlation filters and particle filters, the proposed tracker has several advantages. First, it can shepherd the sampled particles toward the modes of the target state distribution via the MCF, thereby resulting in robust tracking performance. Second, it can effectively handle large-scale variation via a particle sampling strategy. Third, it can effectively maintain multiple modes in the posterior density using fewer particles than conventional particle filters, thereby lowering the computational cost. Extensive experimental results on three benchmark datasets demonstrate that the proposed MCPF performs favorably against the state-of-the-art methods. |
| Author | Tianzhu Zhang Changsheng Xu Ming-Hsuan Yang |
| Author_xml | – sequence: 1 surname: Tianzhu Zhang fullname: Tianzhu Zhang – sequence: 2 surname: Changsheng Xu fullname: Changsheng Xu – sequence: 3 surname: Ming-Hsuan Yang fullname: Ming-Hsuan Yang |
| BookMark | eNpNjL1OwzAYAA0qEm1hZGLxCyR8juOfb6wiWpCKWlWFtbIdG7kNCXLcgbcHCQZuuZtuRib90HtC7hiUjAE-NG_bXVkBU6Vg1QWZMcG1hFqo-pJMGUheSGQ4-dfXZDaOR4CKqwqmZPFy7nIsshlPtBlS8p3Jcejp1qQcXefpMnbZJxqGRHeDPY-ZbuzRu0z3ybhT7N9vyFUw3ehv_zwnr8vHffNUrDer52axLiJTIhccwRmsK4nQSkAta8Q2CK295UxbGYRQAZS0KgjHuEOjINQK0AbTggI-J_e_3-i9P3ym-GHS10ED_iD4N0-WS0g |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2017.512 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 1538604574 9781538604571 |
| EISSN | 1063-6919 |
| EndPage | 4827 |
| ExternalDocumentID | 8099995 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-i175t-390ca942690d60986499df588eb318b6f557f076b7f5c13c9a70f4709bfad0703 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 341 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418371404096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Wed Aug 27 02:33:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-390ca942690d60986499df588eb318b6f557f076b7f5c13c9a70f4709bfad0703 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_8099995 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-July |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023720 ssj0003211698 |
| Score | 2.4608004 |
| Snippet | In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF)... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 4819 |
| SubjectTerms | Benchmark testing Computational efficiency Correlation Robustness Target tracking Visualization |
| Title | Multi-task Correlation Particle Filter for Robust Object Tracking |
| URI | https://ieeexplore.ieee.org/document/8099995 |
| WOSCitedRecordID | wos000418371404096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQNTgRbxlgdG3OZlOx5RRcWASlRB1a2yHVuqkFrUpPx-fEkaGFjYopsiX-J7ft8HcI8kUYkMHQ25i2gi84hqYRVVLOXa-PKHV62LxYuYzdLlUmYdeGixMNbaavnMjvCxmuXnW7PHVtk4xXRGsi50hRA1Vqvtp8S-kuGynSBEqL5STTp5TLkM5Q-_5niyyOa41CVGDIUof6mqVEFl2v_f65zA8AedR7I27pxCx27OoN-kk6T5WQtvOig2HGwDeKzwtrRUxQeZoC5HvQlHsuYDItM1Ts-Jz2TJfKv3RUleNXZqiI9pBrvqQ3ifPr1NnmkjokDXPjMoaSwDoyQCVoOcB0jGLmXuWJr6KjpMNXeMCRcIroVj3jdGKhG4RARSO5XjfXAOvc12Yy-AsEjFCcuD2GhkzZMK6edyY5NQIb5XXcIAD2n1WfNkrJrzufrbfA3H6IN69fUGeuVub2_hyHyV62J3Vzn3G7CSoTI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4QTfSECsZve_BoYV9t16MhEoyIC0HCjbRdmxATMGz4--27zeHBi7flvWzpu-39fJ4HoXsgiYqEb4nPbEAikQZEcSOJpDFT2pU_rGhdzEZ8PI7nc5E00EONhTHGFMtnpguXxSw_XesttMp6MaQzgu6hfXeDwC_RWnVHJXS1DBP1DCEA_ZVi1slCwoQvdgybvf4smcBaF-9SkKL8patShJVB638PdIw6O3weTurIc4IaZnWKWlVCiavPNXOmH82GH1sbPRaIW5LL7AP3QZmj3IXDSfUK4cES5ufY5bJ4slbbLMdvCno12EU1DX31DnofPE37Q1LJKJClyw1yEgpPSwGQVS9lHtCxC5FaGseujvZjxSyl3HqcKW6p844Wkns24p5QVqbwRzhDzdV6Zc4RpoEMI5p6oVbAmyckENCl2kS-BISvvEBtOKTFZ8mUsajO5_Jv8x06HE5fR4vR8_jlCh2BP8pF2GvUzDdbc4MO9Fe-zDa3haO_AUXWpHk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Multi-task+Correlation+Particle+Filter+for+Robust+Object+Tracking&rft.au=Tianzhu+Zhang&rft.au=Changsheng+Xu&rft.au=Ming-Hsuan+Yang&rft.date=2017-07-01&rft.pub=IEEE&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=4819&rft.epage=4827&rft_id=info:doi/10.1109%2FCVPR.2017.512&rft.externalDocID=8099995 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |