MapReduce join strategies for key-value storage
This paper analyses MapReduce join strategies used for big data analysis and mining known as map-side and reduce-side joins. The most used joins will be analysed in this paper, which are theta-join algorithms including all pair partition join, repartition join, broadcasting join, semi join, per-spli...
Uloženo v:
| Vydáno v: | JCSSE 2014 : 2014 11th International Joint Conference on Computer Science and Software Engineering : Chonburi, Thailand, May 14-16, 2014 s. 164 - 169 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2014
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper analyses MapReduce join strategies used for big data analysis and mining known as map-side and reduce-side joins. The most used joins will be analysed in this paper, which are theta-join algorithms including all pair partition join, repartition join, broadcasting join, semi join, per-split semi join. This paper can be considered as a guideline for MapReduce application developers for the selection of join strategies. The analysis of several join strategies for big data analysis and mining is accompanied by comprehensive examples. |
|---|---|
| DOI: | 10.1109/JCSSE.2014.6841861 |