MapReduce join strategies for key-value storage

This paper analyses MapReduce join strategies used for big data analysis and mining known as map-side and reduce-side joins. The most used joins will be analysed in this paper, which are theta-join algorithms including all pair partition join, repartition join, broadcasting join, semi join, per-spli...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:JCSSE 2014 : 2014 11th International Joint Conference on Computer Science and Software Engineering : Chonburi, Thailand, May 14-16, 2014 s. 164 - 169
Hlavní autoři: Van Hieu, Duong, Smanchat, Sucha, Meesad, Phayung
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2014
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper analyses MapReduce join strategies used for big data analysis and mining known as map-side and reduce-side joins. The most used joins will be analysed in this paper, which are theta-join algorithms including all pair partition join, repartition join, broadcasting join, semi join, per-split semi join. This paper can be considered as a guideline for MapReduce application developers for the selection of join strategies. The analysis of several join strategies for big data analysis and mining is accompanied by comprehensive examples.
DOI:10.1109/JCSSE.2014.6841861