ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly red...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition S. 6848 - 6856
Hauptverfasser: Zhang, Xiangyu, Zhou, Xinyu, Lin, Mengxiao, Sun, Jian
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2018
Schlagworte:
ISSN:1063-6919
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet [12] on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ~13Ã- actual speedup over AlexNet while maintaining comparable accuracy.
AbstractList We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet [12] on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ~13Ã- actual speedup over AlexNet while maintaining comparable accuracy.
Author Zhou, Xinyu
Lin, Mengxiao
Zhang, Xiangyu
Sun, Jian
Author_xml – sequence: 1
  givenname: Xiangyu
  surname: Zhang
  fullname: Zhang, Xiangyu
– sequence: 2
  givenname: Xinyu
  surname: Zhou
  fullname: Zhou, Xinyu
– sequence: 3
  givenname: Mengxiao
  surname: Lin
  fullname: Lin, Mengxiao
– sequence: 4
  givenname: Jian
  surname: Sun
  fullname: Sun, Jian
BookMark eNotjMlOwzAUAA0CiVJy5sDFP5DiFzvPNrcqlEUqBZWKa5XlWRjSGGVp6d9TAafRzGHO2UkTGmLsEsQEQNjr7O1lOUkEmIkQGvCIRVYbSKVBVImwx2wEAmWMFuwZi7ruQwiRoJFGpSO2fH0fnKtpQf0NnzZ89t23tKF6z2fO-dJT0_MsNNtQD70PTV7zBQ3tL_pdaD-5Cy1_CoWvid_S1pfUXbBTl9cdRf8cs9XdbJU9xPPn-8dsOo896LSPpUxBS0ykroRKAQVUlXYWS9QFoUKTFzZBkLmkQ68U2fLguZNCGbSFHLOrv60novVX6zd5u1-bVBsDSv4Av1NQ8A
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00716
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 6856
ExternalDocumentID 8578814
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-3351736237d0451601dd7f96c67be6468ab92613a3ed7fd4e9c926af304869b3
IEDL.DBID RIE
ISICitedReferencesCount 6507
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457843607001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-3351736237d0451601dd7f96c67be6468ab92613a3ed7fd4e9c926af304869b3
PageCount 9
ParticipantIDs ieee_primary_8578814
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.6476233
Snippet We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing...
SourceID ieee
SourceType Publisher
StartPage 6848
SubjectTerms Complexity theory
Computational modeling
Computer architecture
Convolution
Mobile handsets
Neural networks
Task analysis
Title ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
URI https://ieeexplore.ieee.org/document/8578814
WOSCitedRecordID wos000457843607001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6AePCECsZ3evBoZXe79OHNIMSLhCAx3Egf00hCFgML0X9vWzbowYun3fbQbDrdzuubbxC6tUwblgElhuqE5DKzRGqhCdAUEpemNrEmNpvgw6GYTuWohu72tTAAEMFncB9eYy7fLs0mhMo6ohvIz_M6qnPOd7Va-3hKxgQVVYYsjKn3bJgUFZtPmshO7200DliuAJ7kob_5r3YqUZsMmv_7jiPU_inLw6O9wjlGNShOULOyI3H1l65baPz6vnFuAUMoH_BjgfufZYgCLr5wPxJG-MWxX3JbnTq1wIGiIz4iJhx7Qxa_LLW_MPATxKukjSaD_qT3TKreCWTuDYKSUNpNuVdOlNvAIOPdLmu5k8wwroHlTCgtvfNEFQU_b3OQxo-Vo4GCT2p6ihrFsoAzhKXKTJ55-enU5S5k_ZzSmqbWKAVCwTlqhR2afezYMWbV5lz8PX2JDoMIdmCrK9QoVxu4RgdmW87Xq5so0m-Jn6JI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8QTfSECsZve_DohK2ja70ZhGCEhSAx3Eg_XiMJGQYG0f_etizowYunrT00S1_X9_V7v4fQraZS0QhIoIhsBDGPdMAlkwGQEBomDHVDK99sIklTNh7zQQndbWthAMCDz-Devfpcvp6rlQuV1VnTkZ_HO2i3GcdRuKnW2kZUIsoIK3Jkbkysb0M5K_h8wgavt94GQ4fmcvDJxHU4_9VQxeuTTuV_X3KIaj-FeXiwVTlHqATZMaoUliQu_tNlFQ1f31fGzCCF_AE_Zrj9mbs44OwLtz1lhF0c2yXXxbkTM-xIOvzDo8KxNWVxfy7tlYGfwF8mNTTqtEetblB0Twim1iTIA0KaYWLVE0m045CxjpfWieFU0UQCjSkTklv3iQgCdl7HwJUdC0McCR-X5ASVs3kGpwhzEak4shKUoYmNy_sZISUJtRICmIAzVHU7NPnY8GNMis05_3v6Bu13R_3epPecvlygAyeODfTqEpXzxQqu0J5a59Pl4tqL9xsqQaWP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=ShuffleNet%3A+An+Extremely+Efficient+Convolutional+Neural+Network+for+Mobile+Devices&rft.au=Zhang%2C+Xiangyu&rft.au=Zhou%2C+Xinyu&rft.au=Lin%2C+Mengxiao&rft.au=Sun%2C+Jian&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=6848&rft.epage=6856&rft_id=info:doi/10.1109%2FCVPR.2018.00716&rft.externalDocID=8578814