Low-Rank Tensor Estimation via Generalized Norm/Quasi-Norm Difference Regularization
In this paper we study minimization of lp-q (0 < p ≤ 1, q ≥ 1, p ≠ q), the general difference of lp and lq norms/quasi-norms for solving nonconvex unconstrained nonlinear programming. We first establish an exact (stable) sparse recovery condition for the l_p-q constrained problem under a restrict...
Saved in:
| Published in: | 2018 4th International Conference on Big Data Computing and Communications (BIGCOM) pp. 144 - 149 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.08.2018
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper we study minimization of lp-q (0 < p ≤ 1, q ≥ 1, p ≠ q), the general difference of lp and lq norms/quasi-norms for solving nonconvex unconstrained nonlinear programming. We first establish an exact (stable) sparse recovery condition for the l_p-q constrained problem under a restricted p-isometry property, and then propose an iterative algorithm for l_p-q regularized unconstrained minimization based on the t-variant of iterative reweighted minimization method (t ≥ 1) and ε-approximation. We theoretically prove that the proposed algorithm converges to a stationary point satisfying the first-order optimality condition. Our extensive real-image experiment results demonstrate that if the sensing operator satisfies the restricted p-isometry property, the proposed iterative reweighted minimization method for l_p-q unconstraint problem generally outperforms the existing methods (especially for those methods based on the difference of norms). |
|---|---|
| DOI: | 10.1109/BIGCOM.2018.00030 |