Low-Rank Tensor Estimation via Generalized Norm/Quasi-Norm Difference Regularization

In this paper we study minimization of lp-q (0 < p ≤ 1, q ≥ 1, p ≠ q), the general difference of lp and lq norms/quasi-norms for solving nonconvex unconstrained nonlinear programming. We first establish an exact (stable) sparse recovery condition for the l_p-q constrained problem under a restrict...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 4th International Conference on Big Data Computing and Communications (BIGCOM) s. 144 - 149
Hlavní autoři: Cen, Yi, Cen, Yigang, Wang, Ke, Li, Jincong, Chen, Shiming, Zhang, Linnan, Tao, Dan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2018
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we study minimization of lp-q (0 < p ≤ 1, q ≥ 1, p ≠ q), the general difference of lp and lq norms/quasi-norms for solving nonconvex unconstrained nonlinear programming. We first establish an exact (stable) sparse recovery condition for the l_p-q constrained problem under a restricted p-isometry property, and then propose an iterative algorithm for l_p-q regularized unconstrained minimization based on the t-variant of iterative reweighted minimization method (t ≥ 1) and ε-approximation. We theoretically prove that the proposed algorithm converges to a stationary point satisfying the first-order optimality condition. Our extensive real-image experiment results demonstrate that if the sensing operator satisfies the restricted p-isometry property, the proposed iterative reweighted minimization method for l_p-q unconstraint problem generally outperforms the existing methods (especially for those methods based on the difference of norms).
DOI:10.1109/BIGCOM.2018.00030