Low-Rank Tensor Estimation via Generalized Norm/Quasi-Norm Difference Regularization
In this paper we study minimization of lp-q (0 < p ≤ 1, q ≥ 1, p ≠ q), the general difference of lp and lq norms/quasi-norms for solving nonconvex unconstrained nonlinear programming. We first establish an exact (stable) sparse recovery condition for the l_p-q constrained problem under a restrict...
Uloženo v:
| Vydáno v: | 2018 4th International Conference on Big Data Computing and Communications (BIGCOM) s. 144 - 149 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2018
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we study minimization of lp-q (0 < p ≤ 1, q ≥ 1, p ≠ q), the general difference of lp and lq norms/quasi-norms for solving nonconvex unconstrained nonlinear programming. We first establish an exact (stable) sparse recovery condition for the l_p-q constrained problem under a restricted p-isometry property, and then propose an iterative algorithm for l_p-q regularized unconstrained minimization based on the t-variant of iterative reweighted minimization method (t ≥ 1) and ε-approximation. We theoretically prove that the proposed algorithm converges to a stationary point satisfying the first-order optimality condition. Our extensive real-image experiment results demonstrate that if the sensing operator satisfies the restricted p-isometry property, the proposed iterative reweighted minimization method for l_p-q unconstraint problem generally outperforms the existing methods (especially for those methods based on the difference of norms). |
|---|---|
| DOI: | 10.1109/BIGCOM.2018.00030 |