Fast locally linear embedding algorithm for exemplar-based voice conversion

The locally linear embedding (LLE) algorithm has been proven to have high output quality and applicability for voice conversion (VC) tasks. However, the major shortcoming of the LLE-based VC approach is the time complexity (especially in the matrix inversion process) during the conversion phase. In...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:APSIPA ASC 2017 : proceedings, ninth Asia-Pacific Signal and Information Processing Association Annual Summit and Conference : 12-15 December 2017, Kuala Lumpur, Malaysia s. 591 - 595
Hlavní autoři: Peng, Yu-Huai, Hsu, Chin-Cheng, Wu, Yi-Chiao, Hwang, Hsin-Te, Liu, Yi-Wen, Tsao, Yu, Wang, Hsin-Min
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2017
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The locally linear embedding (LLE) algorithm has been proven to have high output quality and applicability for voice conversion (VC) tasks. However, the major shortcoming of the LLE-based VC approach is the time complexity (especially in the matrix inversion process) during the conversion phase. In this paper, we propose a fast version of the LLE algorithm that significantly reduces the complexity. In the proposed method, each locally linear patch on the data manifold is described by a pre-computed cluster of exemplars, and thus the major part of on-line computation can be carried out beforehand in the off-line phase. Experimental results demonstrate that the VC performance of the proposed fast LLE algorithm is comparable to that of the original LLE algorithm and that a real-time VC system becomes possible because of the highly reduced time complexity.
AbstractList The locally linear embedding (LLE) algorithm has been proven to have high output quality and applicability for voice conversion (VC) tasks. However, the major shortcoming of the LLE-based VC approach is the time complexity (especially in the matrix inversion process) during the conversion phase. In this paper, we propose a fast version of the LLE algorithm that significantly reduces the complexity. In the proposed method, each locally linear patch on the data manifold is described by a pre-computed cluster of exemplars, and thus the major part of on-line computation can be carried out beforehand in the off-line phase. Experimental results demonstrate that the VC performance of the proposed fast LLE algorithm is comparable to that of the original LLE algorithm and that a real-time VC system becomes possible because of the highly reduced time complexity.
Author Wang, Hsin-Min
Wu, Yi-Chiao
Peng, Yu-Huai
Hsu, Chin-Cheng
Hwang, Hsin-Te
Tsao, Yu
Liu, Yi-Wen
Author_xml – sequence: 1
  givenname: Yu-Huai
  surname: Peng
  fullname: Peng, Yu-Huai
  organization: National Tsinghua University, Hsinchu, Taiwan
– sequence: 2
  givenname: Chin-Cheng
  surname: Hsu
  fullname: Hsu, Chin-Cheng
  organization: Institute of Information Science, Academia Sinica, Taipei, Taiwan
– sequence: 3
  givenname: Yi-Chiao
  surname: Wu
  fullname: Wu, Yi-Chiao
  organization: Institute of Information Science, Academia Sinica, Taipei, Taiwan
– sequence: 4
  givenname: Hsin-Te
  surname: Hwang
  fullname: Hwang, Hsin-Te
  organization: Institute of Information Science, Academia Sinica, Taipei, Taiwan
– sequence: 5
  givenname: Yi-Wen
  surname: Liu
  fullname: Liu, Yi-Wen
  organization: National Tsinghua University, Hsinchu, Taiwan
– sequence: 6
  givenname: Yu
  surname: Tsao
  fullname: Tsao, Yu
  organization: Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
– sequence: 7
  givenname: Hsin-Min
  surname: Wang
  fullname: Wang, Hsin-Min
  organization: Institute of Information Science, Academia Sinica, Taipei, Taiwan
BookMark eNotj91KwzAYQCMo6OaeYDd5gdZ--e9lGU6HAwfq9UjSrzOSNqMpw729wnZ14FwcODNyO6QBCVlCVQJU9VOz-9jsmpJVoEvDDANgN2QGkhsFUjBzTxY5_1RVBbUyXJoH8ra2eaIxeRvjmcYwoB0p9g7bNgwHauMhjWH67mmX_v0v9sdox8LZjC09peCR-jSccMwhDY_krrMx4-LKOflaP3-uXovt-8tm1WyLAFpOBetq04L3dVc7pb3SQhvuhZTOaaU7IYBZI1umGAOJLTdccakMMOE6LyXyOVleugER98cx9HY876-__A84pk2p
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/APSIPA.2017.8282112
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1538615428
9781538615423
EndPage 595
ExternalDocumentID 8282112
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-2f98d1cc9f9b67c674783c455bb767f4412a85d262215ed38363568124bfc55e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425879400119&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:51:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2f98d1cc9f9b67c674783c455bb767f4412a85d262215ed38363568124bfc55e3
PageCount 5
ParticipantIDs ieee_primary_8282112
PublicationCentury 2000
PublicationDate 2017-Dec.
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.
PublicationDecade 2010
PublicationTitle APSIPA ASC 2017 : proceedings, ninth Asia-Pacific Signal and Information Processing Association Annual Summit and Conference : 12-15 December 2017, Kuala Lumpur, Malaysia
PublicationTitleAbbrev APSIPA
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968358
Score 1.6403718
Snippet The locally linear embedding (LLE) algorithm has been proven to have high output quality and applicability for voice conversion (VC) tasks. However, the major...
SourceID ieee
SourceType Publisher
StartPage 591
SubjectTerms Clustering algorithms
Dictionaries
Feature extraction
Manifolds
Speech
Time complexity
Title Fast locally linear embedding algorithm for exemplar-based voice conversion
URI https://ieeexplore.ieee.org/document/8282112
WOSCitedRecordID wos000425879400119&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61eNCLj1Z8k4NH09p18zoWsShKWVCht7JJZrXQdst2W_TfO0mXVsGL7GVZkg1MYL5vJjNfCLnicWYQRx0zHStZjByAKSMEExaMSfFRLkjmP8t-Xw0GOqmR63UvDACE4jNo-ddwlu9yu_CpsjZGBxivoMPdklKserU2-RQtkEyoSlioc6Pb3eTlMen66i3Zqmb-ukIlIEhv739r75PmphWPJmuQOSA1mB6S3R8qgg3y1EvnJQ2gNP6injamBYWJAeen0HT8nhej8mNCkZ9S-ITJDKNZ5uHL0WWOjoKG0vOQN2uSt979690Dq-5IYCME_pJFmVauY63OtBHSCi-Hf2tjzo2RQmZIdqJUcReJCLEdHMajXpDOo7rJLOdwe0Tq03wKx4RGBlJ0N7HyvbDaWWM0t_hrHCety7IT0vBmGc5WMhjDyiKnf38-Izve8qvKj3NSL4sFXJBtuyxH8-Iy7N03jwycCg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB6kLbS99KGl7-6hx67WmOxmj1IqilYCteBNso-0ghqJUdp_39k1aAu9lFxC2M3CDMw3MzvzDcB94CcScVRTWVec-ugD0FAyRpkyUsb4hNpR5vd4vx8OhyIqwcOmF8YY44rPTNW-urt8naqlTZXVMDrAeAUN7q6dnFV0a20zKoKhOxEW1EL1R1FrRq-dqGnrt3i12PtriIrDkNbR_04_hsq2GY9EG5g5gZKZncLhDx7BMnRb8SInDpYmX8Q6jnFGzFQabbeQePKeZuP8Y0rQQyXm00znGM9SC2CarFI0FcQVn7vMWQXeWs-DpzYtpiTQMUJ_Tr1EhLqulEiEZFwxS4jfUH4QSMkZT1BQXhwG2mMeorvRGJFaSjqL6zJRQWAaZ7AzS2fmHIgnTYwGxw9tN6zQSkoRKPw1ruNKJ8kFlK1YRvM1EcaokMjl35_vYL89eOmNep1-9woOrBbWdSDXsJNnS3MDe2qVjxfZrdPjN-APn1M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=APSIPA+ASC+2017+%3A+proceedings%2C+ninth+Asia-Pacific+Signal+and+Information+Processing+Association+Annual+Summit+and+Conference+%3A+12-15+December+2017%2C+Kuala+Lumpur%2C+Malaysia&rft.atitle=Fast+locally+linear+embedding+algorithm+for+exemplar-based+voice+conversion&rft.au=Peng%2C+Yu-Huai&rft.au=Hsu%2C+Chin-Cheng&rft.au=Wu%2C+Yi-Chiao&rft.au=Hwang%2C+Hsin-Te&rft.date=2017-12-01&rft.pub=IEEE&rft.spage=591&rft.epage=595&rft_id=info:doi/10.1109%2FAPSIPA.2017.8282112&rft.externalDocID=8282112