An improved NSGA-II to solve multi-objective optimization problem

NSGA-II(nondominated sorting genetic algorithm II) is a popular multi-objective evolution algorithm (MOEA), which applies binary tournament selection, elitist preserving strategy, nondominated sorting and crowding distance mechanism to obtain a good quality and uniform spread nondominated solution s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control and Decision Conference s. 1037 - 1040
Hlavní autoři: Yaping Fu, Min Huang, Hongfeng Wang, Guanjie Jiang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2014
Témata:
ISBN:147993707X, 9781479937073
ISSN:1948-9439
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract NSGA-II(nondominated sorting genetic algorithm II) is a popular multi-objective evolution algorithm (MOEA), which applies binary tournament selection, elitist preserving strategy, nondominated sorting and crowding distance mechanism to obtain a good quality and uniform spread nondominated solution set. In this paper, an improved version of NSGA-II (INSGA-II) is proposed aiming to increase the diversity and enhance the local search ability. The INSGA-II has two populations: interior population and external population. The external population is used to store the nondominated solution found in the search process, while the interior population takes part in generation evolution. When the interior population tends to converge, it is updated by the individuals in the external population and generated randomly. A local search based on the amount of domination is applied to enhance the local search ability. In order to demonstrate the effectiveness of the proposed INSGA-II, comparisons with NSGA-II is carried out by ten functions, and the results show the quality and spread of INSGA-II are better than NSGA-II.
AbstractList NSGA-II(nondominated sorting genetic algorithm II) is a popular multi-objective evolution algorithm (MOEA), which applies binary tournament selection, elitist preserving strategy, nondominated sorting and crowding distance mechanism to obtain a good quality and uniform spread nondominated solution set. In this paper, an improved version of NSGA-II (INSGA-II) is proposed aiming to increase the diversity and enhance the local search ability. The INSGA-II has two populations: interior population and external population. The external population is used to store the nondominated solution found in the search process, while the interior population takes part in generation evolution. When the interior population tends to converge, it is updated by the individuals in the external population and generated randomly. A local search based on the amount of domination is applied to enhance the local search ability. In order to demonstrate the effectiveness of the proposed INSGA-II, comparisons with NSGA-II is carried out by ten functions, and the results show the quality and spread of INSGA-II are better than NSGA-II.
Author Min Huang
Hongfeng Wang
Yaping Fu
Guanjie Jiang
Author_xml – sequence: 1
  surname: Yaping Fu
  fullname: Yaping Fu
  email: fuyaping0432@163.com
  organization: Coll. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China
– sequence: 2
  surname: Min Huang
  fullname: Min Huang
  organization: Coll. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China
– sequence: 3
  surname: Hongfeng Wang
  fullname: Hongfeng Wang
  organization: Coll. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China
– sequence: 4
  surname: Guanjie Jiang
  fullname: Guanjie Jiang
  organization: Coll. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China
BookMark eNo1j19LwzAAxCNOcJ37AOJLvkBq_qd5LFVnYeiDCr6NNE0go21KGwf66S044eA4-N3BZWA1xMEBcEtwTgjW91X1UOUUE57LQlBG1AXYalUQrrRmCkt5CbL_oD5XYE00L5DmTF-DbJ6PeEEYxmtQlgMM_TjFk2vhy9uuRHUNU4Rz7E4O9l9dCig2R2dTWHIcU-jDj0khDnApNZ3rb8CVN93stmffgI-nx_fqGe1fd3VV7lEgSiREneeNE9K3nilhjW2sJcJqRgRnlFLVmmZBuKF-EffOFwxThgn1WjKJ2Qbc_e0G59xhnEJvpu_D-T77BYDRTgU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCDC.2014.6852317
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISBN 9781479937066
9781479937080
1479937088
1479937061
EndPage 1040
ExternalDocumentID 6852317
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-2ef4be56fdf375cacbcc15c9315432227dabef44a2fa2f4fef83023012f963603
IEDL.DBID RIE
ISBN 147993707X
9781479937073
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343577701038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1948-9439
IngestDate Wed Aug 27 03:47:52 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2ef4be56fdf375cacbcc15c9315432227dabef44a2fa2f4fef83023012f963603
PageCount 4
ParticipantIDs ieee_primary_6852317
PublicationCentury 2000
PublicationDate 2014-May
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-May
PublicationDecade 2010
PublicationTitle Chinese Control and Decision Conference
PublicationTitleAbbrev CCDC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0066300
Score 1.5961424
Snippet NSGA-II(nondominated sorting genetic algorithm II) is a popular multi-objective evolution algorithm (MOEA), which applies binary tournament selection, elitist...
SourceID ieee
SourceType Publisher
StartPage 1037
SubjectTerms Evolutionary computation
Genetic algorithms
Local search acceptance with probability
Measurement
Multi-objective evolution algorithm
Nondominated sorting genetic algorithm
Optimization
Sociology
Sorting
Statistics
Title An improved NSGA-II to solve multi-objective optimization problem
URI https://ieeexplore.ieee.org/document/6852317
WOSCitedRecordID wos000343577701038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB5UerCXtmrpmz302NU8NtnsUdLaCkWEPvAmye4sWGgiov7-7m6ibaGXQghJCCFMsjPf7sz3DcCt8BMDlLmkmGeCMuZlNGGJojrOPB0pJrSr8n1_5pNJMpuJaQPu9lwYRHTFZ9i3hy6Xr0q5sUtlgzgx0yafN6HJeVxxtXZeN7bSUS6DzMwANlHWkbi4jb4en-20nerzsE5v-p4YpOl9aiu8WL9--q82Ky7KjI7-937H0Pum65HpPhCdQAOLDhz-UBrsQNuCykqTuQvDYUEWbjEBFZm8PA7peEzWJTG_4RaJKzGkZf5RuUJSGqfyWbM1Sd1_pgdvo4fX9InWrRTowuCDNQ1QsxyjWCsd8khmMpfSj6QIDYKyuRaustzcwrJAm41p1FYXzAz-QAurKBaeQqsoCzwDImOhAs4jFDkylXm5Mnsz79EGTMgw1ufQtZaZLyu1jHltlIu_L19C2xq_KiG8gtZ6tcFrOJBbY5PVjfvEX0xZod8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFJwv6jbx2zz4aLZ-pE3zOKpzw1kGTtnbaPMBE2xlbPv7TdJuKvgilNCGUsKlufsld_c7gFvmRhooU45lljJMiJPiiEQCqzB1VCAIUzbK921EkySaTtm4BnfbXBgppQ0-kx1za335ouArc1TWDSO9bXLpDuyayllVttZG74aGPMr6kIlewtrO2jQuauyvQ6cbdqfq2a8cnK7DunF8H5sYL9Kpvv-r0Iq1M_3D_43wCNrfCXtovDVFx1CTeRMOfnANNqFhYGXJytyCXi9Hc3ucIAVKXh57eDhEywLpH3EtkQ0yxEX2XipDVGi18lHla6KqAk0bXvsPk3iAq2IKeK4RwhJ7UpFMBqESyqcBT3nGuRtw5msMZbwtVKSZfoWkntIXUVIZZjC9_D3FDKeYfwL1vMjlKSAeMuFRGkiWSSJSJxO61TsfpeEE90N1Bi0jmdlnyZcxq4Ry_nf3DewPJs-j2WiYPF1Aw0xEGVB4CfXlYiWvYI-vtXwW13a6vwDwpaUo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=An+improved+NSGA-II+to+solve+multi-objective+optimization+problem&rft.au=Yaping+Fu&rft.au=Min+Huang&rft.au=Hongfeng+Wang&rft.au=Guanjie+Jiang&rft.date=2014-05-01&rft.pub=IEEE&rft.isbn=147993707X&rft.issn=1948-9439&rft.spage=1037&rft.epage=1040&rft_id=info:doi/10.1109%2FCCDC.2014.6852317&rft.externalDocID=6852317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-9439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-9439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-9439&client=summon