Multi-column deep neural networks for image classification

Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible, wide and deep artificial neural network architectures can. Small (often minimal) receptive fields of convolu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2012 IEEE Conference on Computer Vision and Pattern Recognition s. 3642 - 3649
Hlavní autoři: Ciresan, D., Meier, U., Schmidhuber, J.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2012
Témata:
ISBN:9781467312264, 1467312266
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits or traffic signs. Our biologically plausible, wide and deep artificial neural network architectures can. Small (often minimal) receptive fields of convolutional winner-take-all neurons yield large network depth, resulting in roughly as many sparsely connected neural layers as found in mammals between retina and visual cortex. Only winner neurons are trained. Several deep neural columns become experts on inputs preprocessed in different ways; their predictions are averaged. Graphics cards allow for fast training. On the very competitive MNIST handwriting benchmark, our method is the first to achieve near-human performance. On a traffic sign recognition benchmark it outperforms humans by a factor of two. We also improve the state-of-the-art on a plethora of common image classification benchmarks.
ISBN:9781467312264
1467312266
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2012.6248110