Single channel audio source separation using convolutional denoising autoencoders
Deep learning techniques have been used recently to tackle the audio source separation problem. In this work, we propose to use deep fully convolutional denoising autoencoders (CDAEs) for monaural audio source separation. We use as many CDAEs as the number of sources to be separated from the mixed s...
Uložené v:
| Vydané v: | 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP) s. 1265 - 1269 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.11.2017
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deep learning techniques have been used recently to tackle the audio source separation problem. In this work, we propose to use deep fully convolutional denoising autoencoders (CDAEs) for monaural audio source separation. We use as many CDAEs as the number of sources to be separated from the mixed signal. Each CDAE is trained to separate one source and treats the other sources as background noise. The main idea is to allow each CDAE to learn suitable spectral-temporal filters and features to its corresponding source. Our experimental results show that CDAEs perform source separation slightly better than the deep feedforward neural networks (FNNs) even with fewer parameters than FNNs. |
|---|---|
| AbstractList | Deep learning techniques have been used recently to tackle the audio source separation problem. In this work, we propose to use deep fully convolutional denoising autoencoders (CDAEs) for monaural audio source separation. We use as many CDAEs as the number of sources to be separated from the mixed signal. Each CDAE is trained to separate one source and treats the other sources as background noise. The main idea is to allow each CDAE to learn suitable spectral-temporal filters and features to its corresponding source. Our experimental results show that CDAEs perform source separation slightly better than the deep feedforward neural networks (FNNs) even with fewer parameters than FNNs. |
| Author | Grais, Emad M. Plumbley, Mark D. |
| Author_xml | – sequence: 1 givenname: Emad M. surname: Grais fullname: Grais, Emad M. organization: Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK – sequence: 2 givenname: Mark D. surname: Plumbley fullname: Plumbley, Mark D. organization: Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK |
| BookMark | eNotj9tKxDAURSMoqGO_QJD8QGtuTZpHGXQcGFAZfR5O0lONxGRoWsG_9zZPCxaLDfucHKeckJArzhrOmb1exewgbtePjWDcNJ1klmt1RCprOt4yy1prmTolVSnvjDEhtG2VOSNP25BeI1L_BilhpDD3IdOS59EjLbiHEaaQE53LT0d9Tp85zr8GIu0x5fDnYZ4yJp97HMsFORkgFqwOXJCXu9vn5X29eVitlzebOnDTTrXwAxtQydY4BV45DV1r0WjR9Ra17gVKMaCUgwcn7eCAASitubPSOmWcXJDL_92AiLv9GD5g_NodjstvqXNUgw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/GlobalSIP.2017.8309164 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781509059904 1509059903 |
| EndPage | 1269 |
| ExternalDocumentID | 8309164 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-2cf0fe4357b4ac4b6a859e7628d9e66d2e32fe33fcab39fba0aa4661b939b47b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450053100250&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:51:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-2cf0fe4357b4ac4b6a859e7628d9e66d2e32fe33fcab39fba0aa4661b939b47b3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8309164 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Nov. |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP) |
| PublicationTitleAbbrev | GlobalSIP |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002269547 |
| Score | 1.973145 |
| Snippet | Deep learning techniques have been used recently to tackle the audio source separation problem. In this work, we propose to use deep fully convolutional... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1265 |
| SubjectTerms | Convolution Convolutional codes deep convolutional neural networks deep learning Feature extraction Fully convolutional denoising autoencoders Noise reduction single channel audio source separation Source separation Spectrogram stacked convolutional autoencoders Two dimensional displays |
| Title | Single channel audio source separation using convolutional denoising autoencoders |
| URI | https://ieeexplore.ieee.org/document/8309164 |
| WOSCitedRecordID | wos000450053100250&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEvfmziNzl4tFvbpE1yFoeCjMlUdhv5eJXCaGVr_ftN2jIVvHhKCITAS8h7efn9fg_gJrIuaEhCGyQJZgFLaBgIHdMAQ00jZUQsm3Jvb098OhWLhZz14HbLhUHEBnyGI99t_vJtaWqfKhsL6rxbynZgh_O05Wpt8ykujJAJ4x0JOArluBXNnz_OPICLj7rJv6qoNE5kcvC_5Q9h-M3GI7OtnzmCHhbHsP9DSHAAz3PXrJB4Gm-BK6Jqm5ekTcyTDbb63mVBPMr9nXikeXfi1Iq4i6fMm3FVV6XXtfTY5iG8Tu5f7h6CrlhCkLsIoApik4UZuuCHa6YM06kSiUR31QkrMU1tjDTOkNLMKE1lplWoFHPOWUsqNeOankC_KAs8BcKtYJmN3NNGu8eS9hJ_IsLUGO21ZHh4BgNvnOVHq4ex7Oxy_vfwBex5-7f8vUvoV-sar2DXfFb5Zn3dbOIXoqCf2w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zCuqLlynezYOPdkubtE2exbHhHJNN2dvI5VQKo5Wt9febtGUq-OJTQiAQknDOycn3fQehO9_YoCEkxgtDSDwWUuJxFVAPiKK-1DwQVbm3t1E8HvP5XExa6H7DhQGACnwGXdet_vJNrkuXKutxar1bxLbQdshYQGq21iajYgMJEbK4oQH7RPRq2fzpcOIgXHG3mf6rjkrlRvoH_1vAITr55uPhycbTHKEWZMdo_4eUYAe9TG2zBOyIvBkssSxNmuM6NY_XUCt85xl2OPd37LDmzZ2TS2xNT55W47Iscqds6dDNJ-i1_zh7GHhNuQQvtTFA4QU6IQnY8CdWTGqmIslDAdbYcSMgikwANEiA0kRLRUWiJJGSWfesBBWKxYqeonaWZ3CGcGw4S4xvHzfKPpeUE_njPkRaK6cmE5Nz1HGbs_ioFTEWzb5c_D18i3YHs-fRYjQcP12iPXcWNZvvCrWLVQnXaEd_Ful6dVMd6Bce7qMi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Global+Conference+on+Signal+and+Information+Processing+%28GlobalSIP%29&rft.atitle=Single+channel+audio+source+separation+using+convolutional+denoising+autoencoders&rft.au=Grais%2C+Emad+M.&rft.au=Plumbley%2C+Mark+D.&rft.date=2017-11-01&rft.pub=IEEE&rft.spage=1265&rft.epage=1269&rft_id=info:doi/10.1109%2FGlobalSIP.2017.8309164&rft.externalDocID=8309164 |