Single channel audio source separation using convolutional denoising autoencoders

Deep learning techniques have been used recently to tackle the audio source separation problem. In this work, we propose to use deep fully convolutional denoising autoencoders (CDAEs) for monaural audio source separation. We use as many CDAEs as the number of sources to be separated from the mixed s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP) s. 1265 - 1269
Hlavní autori: Grais, Emad M., Plumbley, Mark D.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.11.2017
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep learning techniques have been used recently to tackle the audio source separation problem. In this work, we propose to use deep fully convolutional denoising autoencoders (CDAEs) for monaural audio source separation. We use as many CDAEs as the number of sources to be separated from the mixed signal. Each CDAE is trained to separate one source and treats the other sources as background noise. The main idea is to allow each CDAE to learn suitable spectral-temporal filters and features to its corresponding source. Our experimental results show that CDAEs perform source separation slightly better than the deep feedforward neural networks (FNNs) even with fewer parameters than FNNs.
AbstractList Deep learning techniques have been used recently to tackle the audio source separation problem. In this work, we propose to use deep fully convolutional denoising autoencoders (CDAEs) for monaural audio source separation. We use as many CDAEs as the number of sources to be separated from the mixed signal. Each CDAE is trained to separate one source and treats the other sources as background noise. The main idea is to allow each CDAE to learn suitable spectral-temporal filters and features to its corresponding source. Our experimental results show that CDAEs perform source separation slightly better than the deep feedforward neural networks (FNNs) even with fewer parameters than FNNs.
Author Grais, Emad M.
Plumbley, Mark D.
Author_xml – sequence: 1
  givenname: Emad M.
  surname: Grais
  fullname: Grais, Emad M.
  organization: Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK
– sequence: 2
  givenname: Mark D.
  surname: Plumbley
  fullname: Plumbley, Mark D.
  organization: Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK
BookMark eNotj9tKxDAURSMoqGO_QJD8QGtuTZpHGXQcGFAZfR5O0lONxGRoWsG_9zZPCxaLDfucHKeckJArzhrOmb1exewgbtePjWDcNJ1klmt1RCprOt4yy1prmTolVSnvjDEhtG2VOSNP25BeI1L_BilhpDD3IdOS59EjLbiHEaaQE53LT0d9Tp85zr8GIu0x5fDnYZ4yJp97HMsFORkgFqwOXJCXu9vn5X29eVitlzebOnDTTrXwAxtQydY4BV45DV1r0WjR9Ra17gVKMaCUgwcn7eCAASitubPSOmWcXJDL_92AiLv9GD5g_NodjstvqXNUgw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GlobalSIP.2017.8309164
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781509059904
1509059903
EndPage 1269
ExternalDocumentID 8309164
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-2cf0fe4357b4ac4b6a859e7628d9e66d2e32fe33fcab39fba0aa4661b939b47b3
IEDL.DBID RIE
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450053100250&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:51:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2cf0fe4357b4ac4b6a859e7628d9e66d2e32fe33fcab39fba0aa4661b939b47b3
PageCount 5
ParticipantIDs ieee_primary_8309164
PublicationCentury 2000
PublicationDate 2017-Nov.
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov.
PublicationDecade 2010
PublicationTitle 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP)
PublicationTitleAbbrev GlobalSIP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002269547
Score 1.973145
Snippet Deep learning techniques have been used recently to tackle the audio source separation problem. In this work, we propose to use deep fully convolutional...
SourceID ieee
SourceType Publisher
StartPage 1265
SubjectTerms Convolution
Convolutional codes
deep convolutional neural networks
deep learning
Feature extraction
Fully convolutional denoising autoencoders
Noise reduction
single channel audio source separation
Source separation
Spectrogram
stacked convolutional autoencoders
Two dimensional displays
Title Single channel audio source separation using convolutional denoising autoencoders
URI https://ieeexplore.ieee.org/document/8309164
WOSCitedRecordID wos000450053100250&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEvfmziNzl4tFvbpE1yFoeCjMlUdhv5eJXCaGVr_ftN2jIVvHhKCITAS8h7efn9fg_gJrIuaEhCGyQJZgFLaBgIHdMAQ00jZUQsm3Jvb098OhWLhZz14HbLhUHEBnyGI99t_vJtaWqfKhsL6rxbynZgh_O05Wpt8ykujJAJ4x0JOArluBXNnz_OPICLj7rJv6qoNE5kcvC_5Q9h-M3GI7OtnzmCHhbHsP9DSHAAz3PXrJB4Gm-BK6Jqm5ekTcyTDbb63mVBPMr9nXikeXfi1Iq4i6fMm3FVV6XXtfTY5iG8Tu5f7h6CrlhCkLsIoApik4UZuuCHa6YM06kSiUR31QkrMU1tjDTOkNLMKE1lplWoFHPOWUsqNeOankC_KAs8BcKtYJmN3NNGu8eS9hJ_IsLUGO21ZHh4BgNvnOVHq4ex7Oxy_vfwBex5-7f8vUvoV-sar2DXfFb5Zn3dbOIXoqCf2w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zCuqLlynezYOPdkubtE2exbHhHJNN2dvI5VQKo5Wt9febtGUq-OJTQiAQknDOycn3fQehO9_YoCEkxgtDSDwWUuJxFVAPiKK-1DwQVbm3t1E8HvP5XExa6H7DhQGACnwGXdet_vJNrkuXKutxar1bxLbQdshYQGq21iajYgMJEbK4oQH7RPRq2fzpcOIgXHG3mf6rjkrlRvoH_1vAITr55uPhycbTHKEWZMdo_4eUYAe9TG2zBOyIvBkssSxNmuM6NY_XUCt85xl2OPd37LDmzZ2TS2xNT55W47Iscqds6dDNJ-i1_zh7GHhNuQQvtTFA4QU6IQnY8CdWTGqmIslDAdbYcSMgikwANEiA0kRLRUWiJJGSWfesBBWKxYqeonaWZ3CGcGw4S4xvHzfKPpeUE_njPkRaK6cmE5Nz1HGbs_ioFTEWzb5c_D18i3YHs-fRYjQcP12iPXcWNZvvCrWLVQnXaEd_Ful6dVMd6Bce7qMi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Global+Conference+on+Signal+and+Information+Processing+%28GlobalSIP%29&rft.atitle=Single+channel+audio+source+separation+using+convolutional+denoising+autoencoders&rft.au=Grais%2C+Emad+M.&rft.au=Plumbley%2C+Mark+D.&rft.date=2017-11-01&rft.pub=IEEE&rft.spage=1265&rft.epage=1269&rft_id=info:doi/10.1109%2FGlobalSIP.2017.8309164&rft.externalDocID=8309164