Data Mining Based Partitioning of Dynamic Voltage Control Areas and Contingency Clustering
Partitioning of dynamic voltage control areas (DVCAs) and contingency clustering have attracted increasing attentions in power system planning. In this paper, we propose a data mining based method to recognize behavior patterns of buses and contingencies from offline simulation, so as to identify DV...
Uloženo v:
| Vydáno v: | IEEE Power & Energy Society General Meeting s. 1 - 5 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2018
|
| Témata: | |
| ISSN: | 1944-9933 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Partitioning of dynamic voltage control areas (DVCAs) and contingency clustering have attracted increasing attentions in power system planning. In this paper, we propose a data mining based method to recognize behavior patterns of buses and contingencies from offline simulation, so as to identify DVCAs and group contingencies. The voltage control ability index (VCAI) is defined firstly to evaluate the control effect of a bus with VAR injection subject to a contingency. By traversing all the influencing factors of VCAI, including contingency, controlling bus, and observed bus, a data pool of VCAI is obtained. Behavior patterns of bus and contingency are then extracted from the data pool, respectively. Similarity metric for behavior pattern is defined and the affinity propagation clustering algorithm is adopted to cluster buses and contingencies, so as to form DVCAs and contingency clusters, respectively. Silhouette coefficient analysis is applied to determine a proper clustering scheme. The proposed approach is tested on a modified NE 39-bus system to validate its effectiveness. |
|---|---|
| AbstractList | Partitioning of dynamic voltage control areas (DVCAs) and contingency clustering have attracted increasing attentions in power system planning. In this paper, we propose a data mining based method to recognize behavior patterns of buses and contingencies from offline simulation, so as to identify DVCAs and group contingencies. The voltage control ability index (VCAI) is defined firstly to evaluate the control effect of a bus with VAR injection subject to a contingency. By traversing all the influencing factors of VCAI, including contingency, controlling bus, and observed bus, a data pool of VCAI is obtained. Behavior patterns of bus and contingency are then extracted from the data pool, respectively. Similarity metric for behavior pattern is defined and the affinity propagation clustering algorithm is adopted to cluster buses and contingencies, so as to form DVCAs and contingency clusters, respectively. Silhouette coefficient analysis is applied to determine a proper clustering scheme. The proposed approach is tested on a modified NE 39-bus system to validate its effectiveness. |
| Author | Wu, Liang Guan, Lin |
| Author_xml | – sequence: 1 givenname: Liang surname: Wu fullname: Wu, Liang – sequence: 2 givenname: Lin surname: Guan fullname: Guan, Lin |
| BookMark | eNotUEtLw0AYXEXBWvsH9LJ_IHXfj2NNaxVaLPg4eClfk2_LSrqRZD303xuqcxlmGAZmrslFahMScsvZlHPm7zeL1-V6Khh3U6edUd6ckYm3jmvpjLVMinMy4l6pwnspr8ik77_YAK2sMWJEPueQga5jimlPH6DHmm6gyzHH9mS1gc6PCQ6xoh9tk2GPtGxT7tqGzjqEnkKqT84QxlQdadn89Bm7Qd6QywBNj5N_HpP3x8Vb-VSsXpbP5WxVRG51LsSO6aBDFWxtJMigMNRMGsVqIQMDZMo4UdVgcGc1Mjds9UJzEE5VO45WjsndX29ExO13Fw_QHbf_b8hfH19Vog |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/PESGM.2018.8586496 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781538677032 1538677032 |
| EISSN | 1944-9933 |
| EndPage | 5 |
| ExternalDocumentID | 8586496 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i175t-2b05f5fcf7d63a3f4efd03640d23f0ae04682cda6eb75e082019251a284cb1e73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457893902219&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:52:45 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-2b05f5fcf7d63a3f4efd03640d23f0ae04682cda6eb75e082019251a284cb1e73 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8586496 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Aug. |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE Power & Energy Society General Meeting |
| PublicationTitleAbbrev | PESGM |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000547662 |
| Score | 2.0505605 |
| Snippet | Partitioning of dynamic voltage control areas (DVCAs) and contingency clustering have attracted increasing attentions in power system planning. In this paper,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Clustering algorithms contingency clustering Data mining dynamic voltage control area Indexes Power system dynamics Power system planning Power system stability Reactive power similarity evaluation Voltage control |
| Title | Data Mining Based Partitioning of Dynamic Voltage Control Areas and Contingency Clustering |
| URI | https://ieeexplore.ieee.org/document/8586496 |
| WOSCitedRecordID | wos000457893902219&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA7b8EFfvGzinTz4aLe2aZP0UTenLxsFLwxfRi4nMBitzE7w35ukdSr44lsbKIWTtN_JyfedD6FLJrlhkVQBEVEWJESD_aQyGigiiIBEsVgqbzbBplM-m2V5C11ttDAA4Mln0HeX_ixfl2rtSmUDnnKaZLSN2ozRWqu1qafY1INRGn_pYsJskN8-3E0ceYv3mwd_Oah4ABnv_u_Ve6j3rcTD-QZj9lELigO086OJYBe9jEQl8MQbPeAbC0oa5249NJVWXBo8qm3n8XO5rOz_Aw9rfjq-dox0LArtR7zMSn3g4XLtuifY2x56Gt8-Du-DxjEhWNg0oApiGaYmNcowTW2wTQJGu4PGUMfEhALsZpjHSgsKkqXg0T-zCY6wGKVkBIwcok5RFnCEcBJLoJyoMEmI3TJGMhUqTXmmgYSQxvoYdV2U5q91U4x5E6CTv4dP0babiJo5d4Y61WoN52hLvVeLt9WFn8lP4Zmgaw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5zCuqLlynezYOPdmtz6eVRd3HiNgpOGb6MNDmFwWhldoL_3iStU8EX39pAKZyk_U5Ovu98CF0FSZgGXiIdKrzIYVSB_qQi35FUUAFMBiSR1mwiGI3CySSKa-h6pYUBAEs-g6a5tGf5KpdLUyprhTz0WeSvoXXOGHFLtdaqoqKTj8D3yZcyxo1acffxbmjoW2GzevSXh4qFkN7O_16-iw6-tXg4XqHMHqpBto-2f7QRbKCXjigEHlqrB3yrYUnh2KyIqtaK8xR3SuN5_JzPC_0Hwe2SoY5vDCcdi0zZESu0kh-4PV-a_gn69gA99brjdt-pPBOcmU4ECockLk95KtNA-TrcKYNUmaNGVxGaugL0djgkUgkfkoCDxf9IpzhCo5RMPAjoIapneQZHCDOSgB9S6TJG9abRS7iQnIeRAuoCJ-oYNUyUpq9lW4xpFaCTv4cv0WZ_PBxMB_ejh1O0ZSal5NGdoXqxWMI52pDvxextcWFn9RNoTKOy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Power+%26+Energy+Society+General+Meeting&rft.atitle=Data+Mining+Based+Partitioning+of+Dynamic+Voltage+Control+Areas+and+Contingency+Clustering&rft.au=Wu%2C+Liang&rft.au=Guan%2C+Lin&rft.date=2018-08-01&rft.pub=IEEE&rft.eissn=1944-9933&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPESGM.2018.8586496&rft.externalDocID=8586496 |