Data Mining Based Partitioning of Dynamic Voltage Control Areas and Contingency Clustering

Partitioning of dynamic voltage control areas (DVCAs) and contingency clustering have attracted increasing attentions in power system planning. In this paper, we propose a data mining based method to recognize behavior patterns of buses and contingencies from offline simulation, so as to identify DV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Power & Energy Society General Meeting S. 1 - 5
Hauptverfasser: Wu, Liang, Guan, Lin
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2018
Schlagworte:
ISSN:1944-9933
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Partitioning of dynamic voltage control areas (DVCAs) and contingency clustering have attracted increasing attentions in power system planning. In this paper, we propose a data mining based method to recognize behavior patterns of buses and contingencies from offline simulation, so as to identify DVCAs and group contingencies. The voltage control ability index (VCAI) is defined firstly to evaluate the control effect of a bus with VAR injection subject to a contingency. By traversing all the influencing factors of VCAI, including contingency, controlling bus, and observed bus, a data pool of VCAI is obtained. Behavior patterns of bus and contingency are then extracted from the data pool, respectively. Similarity metric for behavior pattern is defined and the affinity propagation clustering algorithm is adopted to cluster buses and contingencies, so as to form DVCAs and contingency clusters, respectively. Silhouette coefficient analysis is applied to determine a proper clustering scheme. The proposed approach is tested on a modified NE 39-bus system to validate its effectiveness.
AbstractList Partitioning of dynamic voltage control areas (DVCAs) and contingency clustering have attracted increasing attentions in power system planning. In this paper, we propose a data mining based method to recognize behavior patterns of buses and contingencies from offline simulation, so as to identify DVCAs and group contingencies. The voltage control ability index (VCAI) is defined firstly to evaluate the control effect of a bus with VAR injection subject to a contingency. By traversing all the influencing factors of VCAI, including contingency, controlling bus, and observed bus, a data pool of VCAI is obtained. Behavior patterns of bus and contingency are then extracted from the data pool, respectively. Similarity metric for behavior pattern is defined and the affinity propagation clustering algorithm is adopted to cluster buses and contingencies, so as to form DVCAs and contingency clusters, respectively. Silhouette coefficient analysis is applied to determine a proper clustering scheme. The proposed approach is tested on a modified NE 39-bus system to validate its effectiveness.
Author Wu, Liang
Guan, Lin
Author_xml – sequence: 1
  givenname: Liang
  surname: Wu
  fullname: Wu, Liang
– sequence: 2
  givenname: Lin
  surname: Guan
  fullname: Guan, Lin
BookMark eNotUEtLw0AYXEXBWvsH9LJ_IHXfj2NNaxVaLPg4eClfk2_LSrqRZD303xuqcxlmGAZmrslFahMScsvZlHPm7zeL1-V6Khh3U6edUd6ckYm3jmvpjLVMinMy4l6pwnspr8ik77_YAK2sMWJEPueQga5jimlPH6DHmm6gyzHH9mS1gc6PCQ6xoh9tk2GPtGxT7tqGzjqEnkKqT84QxlQdadn89Bm7Qd6QywBNj5N_HpP3x8Vb-VSsXpbP5WxVRG51LsSO6aBDFWxtJMigMNRMGsVqIQMDZMo4UdVgcGc1Mjds9UJzEE5VO45WjsndX29ExO13Fw_QHbf_b8hfH19Vog
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/PESGM.2018.8586496
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781538677032
1538677032
EISSN 1944-9933
EndPage 5
ExternalDocumentID 8586496
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-2b05f5fcf7d63a3f4efd03640d23f0ae04682cda6eb75e082019251a284cb1e73
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457893902219&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:52:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2b05f5fcf7d63a3f4efd03640d23f0ae04682cda6eb75e082019251a284cb1e73
PageCount 5
ParticipantIDs ieee_primary_8586496
PublicationCentury 2000
PublicationDate 2018-Aug.
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug.
PublicationDecade 2010
PublicationTitle IEEE Power & Energy Society General Meeting
PublicationTitleAbbrev PESGM
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000547662
Score 2.0504532
Snippet Partitioning of dynamic voltage control areas (DVCAs) and contingency clustering have attracted increasing attentions in power system planning. In this paper,...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Clustering algorithms
contingency clustering
Data mining
dynamic voltage control area
Indexes
Power system dynamics
Power system planning
Power system stability
Reactive power
similarity evaluation
Voltage control
Title Data Mining Based Partitioning of Dynamic Voltage Control Areas and Contingency Clustering
URI https://ieeexplore.ieee.org/document/8586496
WOSCitedRecordID wos000457893902219&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwHP2xDQ968WMTv8nBo93apk2ao25OLxsFPxheRj5hMFqZneB_b5LWqeDFWxsohST0vf7y3u8BXAoWGkyNCqTgOkikSAOH80GCs4wI7jhE6MMm6HSazWYsb8HVxgujtfbiM913l_4sX5Vy7UplgyzNSMJIG9qUktqrtamnWOpBCYm_fDEhG-S3D3cTJ97K-s2DvxJUPICMd__36j3ofTvxUL7BmH1o6eIAdn40EezCy4hXHE180AO6saCkUO72Q1NpRaVBozp2Hj2Xy8p-P9Cw1qeja6dIR7xQfsTbrOQHGi7XrnuCve3B0_j2cXgfNIkJwcLSgCqIRZia1EhDFcEcm0Qb5Q4aQxVjE3Jtf4azWCpOtKCp9ujPLMHhFqOkiDTFh9ApykIfASKucZ4yURyKKDHUEomUGZwyrJkSSkTH0HWzNH-tm2LMmwk6-Xv4FLbdQtTKuTPoVKu1Poct-V4t3lYXfiU_ATGMoCc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA1zCuqLlynezYOPdmubJm0edRcnbqPglOHLyBUGo5XZCf57k7ROBV98awOlkISe0y_nfAeAK059jWItPcGZ8iLBsWdx3otQkhDOLIfwXdhEPBolkwlNa-B65YVRSjnxmWraS3eWL3OxtKWyVoITElGyBtZxFIV-6dZaVVQM-YgJCb-cMT5tpd3Hu6GVbyXN6tFfGSoOQno7_3v5Ljj49uLBdIUye6Cmsn2w_aONYAO8dFjB4NBFPcBbA0sSpnZHVLVWmGvYKYPn4XM-L8wXBLZLhTq8sZp0yDLpRpzRSnzA9nxp-yeY2wPw1OuO232vykzwZoYIFF7IfayxFjqWBDGkI6WlPWr0ZYi0z5T5HU5CIRlRPMbK4T81FIcZlBI8UDE6BPUsz9QRgMS2zpM6CH0eRDo2VAJTjTBFikoueXAMGnaWpq9lW4xpNUEnfw9fgs3-eDiYDu5HD6dgyy5KqaM7A_VisVTnYEO8F7O3xYVb1U-0SKNu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Power+%26+Energy+Society+General+Meeting&rft.atitle=Data+Mining+Based+Partitioning+of+Dynamic+Voltage+Control+Areas+and+Contingency+Clustering&rft.au=Wu%2C+Liang&rft.au=Guan%2C+Lin&rft.date=2018-08-01&rft.pub=IEEE&rft.eissn=1944-9933&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FPESGM.2018.8586496&rft.externalDocID=8586496