Global sensitivity analysis of nonlinear mathematical models - An implementation of two complementing variance-based algorithms

A new approach for a global sensitivity analysis of nonlinear mathematical models is presented using the information provided by two complementing variance-based methods. As a first step, the model is evaluated applying a shared sampling strategy for both methods based on Sobol's quasi-random s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 2012 Winter Simulation Conference (WSC) s. 1 - 12
Hlavní autoři: Henkel, T., Wilson, H., Krug, W.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2012
Témata:
ISBN:1467347795, 9781467347792
ISSN:0891-7736
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A new approach for a global sensitivity analysis of nonlinear mathematical models is presented using the information provided by two complementing variance-based methods. As a first step, the model is evaluated applying a shared sampling strategy for both methods based on Sobol's quasi-random sequences. Then, total sensitivity indices are estimated in a second step using the Sobol'-Saltelli method whereas first-order sensitivity indices are concurrently computed using a modified version of the well-known Fourier Amplitude Sensitivity Test. Although the analysis is focused on the calculation of total sensitivity indices, first-order sensitivity indices and thus information about the main effects of model input parameters can be obtained at no extra computational cost. Another advantage of this approach is that data of previous model evaluations can be reused for a new, more precise sensitivity analysis. The capability and performance of the method is investigated using an analytical test function.
ISBN:1467347795
9781467347792
ISSN:0891-7736
DOI:10.1109/WSC.2012.6465065