Distributed continuous-time gradient-based algorithm for constrained optimization

In this paper, we consider distributed algorithm based on a continuous-time multi-agent system to solve constrained optimization problem. The global optimization objective function is taken as the sum of agents' individual objective functions under a group of convex inequality function constrai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control Conference s. 1563 - 1567
Hlavní autoři: Peng Yi, Yiguang Hong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: TCCT, CAA 01.07.2014
Témata:
ISSN:1934-1768
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider distributed algorithm based on a continuous-time multi-agent system to solve constrained optimization problem. The global optimization objective function is taken as the sum of agents' individual objective functions under a group of convex inequality function constraints. Because the local objective functions cannot be explicitly known by all the agents, the problem has to be solved in a distributed manner with the cooperation between agents. Here we propose a continuous-time distributed gradient dynamics based on the KKT condition and Lagrangian multiplier methods to solve the optimization problem. We show that all the agents asymptotically converge to the same optimal solution with the help of a constructed Lyapunov function and a LaSalle invariance principle of hybrid systems.
ISSN:1934-1768
DOI:10.1109/ChiCC.2014.6896861