A Modified Dynamic Particle Swarm Optimization Algorithm

Inspired from social behavior of organisms such as bird flocking, particle swarm optimization(PSO) has rapid convergence speed and has been successfully applied in many optimization problems. in this paper, we present a dynamic particle swarm optimization algorithm to enhance the performance of stan...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2012 fifth International Symposium on Computational Intelligence and Design : 28-29 October 2012 Ročník 1; s. 432 - 435
Hlavní autor: Liu Wen
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2012
Témata:
ISBN:1467326461, 9781467326469
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Inspired from social behavior of organisms such as bird flocking, particle swarm optimization(PSO) has rapid convergence speed and has been successfully applied in many optimization problems. in this paper, we present a dynamic particle swarm optimization algorithm to enhance the performance of standard PSO. We design a novel function to compute the initial dynamic inertia weight, and then calculate inertia weight through a nonlinear function. Afterwards, searching process is repeated until the max iteration number is reached or the minimum error condition is satisfied. to testify the effectiveness of the proposed algorithm, we conduct two experiments. Experimental results show that our algorithm performs better than FPSO and standard PSO in best fitness and convergence speed.
ISBN:1467326461
9781467326469
DOI:10.1109/ISCID.2012.114