Hierarchical feature exttratction for object recogition in complex SAR image using modified convolutional auto-encoder

Automatic target recognition is a crucial task for SAR remote sensing. Unlike other methods, the unsupervised representation learning based on deep architecture can obtain robust high-level features directly from raw data. A drawback of most unsupervised representation learning methods in SAR ATR is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Geoscience and Remote Sensing Symposium proceedings s. 854 - 857
Hlavní autoři: Tian, S.R., Wang, C., Zhang, H.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2017
Témata:
ISSN:2153-7003
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Automatic target recognition is a crucial task for SAR remote sensing. Unlike other methods, the unsupervised representation learning based on deep architecture can obtain robust high-level features directly from raw data. A drawback of most unsupervised representation learning methods in SAR ATR is that they only deal with amplitude images. In addition, many methods utlize a single layer architecture to extract pixel-level/mid-level features which are probably sensitive to condition variation. In this paper, a feature extraction method based on modified stacked convolutional denoising auto-encoder (MSCDAE) for complex SAR images is proposed, where convolutional kernels of MSCDAE are learned by 1-D modified denoising auto-encoders. By stacking the convolutional layers and pooling layers, high-level respresntation of objects are learned. The features are subsequently sent to a trained SVM for object classification. Experimetnal results demonstrate that the proposed method can provide a significant improvement in the ATR performance.
AbstractList Automatic target recognition is a crucial task for SAR remote sensing. Unlike other methods, the unsupervised representation learning based on deep architecture can obtain robust high-level features directly from raw data. A drawback of most unsupervised representation learning methods in SAR ATR is that they only deal with amplitude images. In addition, many methods utlize a single layer architecture to extract pixel-level/mid-level features which are probably sensitive to condition variation. In this paper, a feature extraction method based on modified stacked convolutional denoising auto-encoder (MSCDAE) for complex SAR images is proposed, where convolutional kernels of MSCDAE are learned by 1-D modified denoising auto-encoders. By stacking the convolutional layers and pooling layers, high-level respresntation of objects are learned. The features are subsequently sent to a trained SVM for object classification. Experimetnal results demonstrate that the proposed method can provide a significant improvement in the ATR performance.
Author Zhang, H.
Tian, S.R.
Wang, C.
Author_xml – sequence: 1
  givenname: S.R.
  surname: Tian
  fullname: Tian, S.R.
  organization: Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Department of Electronic Engineering, Nanjing 210094, China
– sequence: 2
  givenname: C.
  surname: Wang
  fullname: Wang, C.
  organization: Chinese Academy of Sciences, Institute of Remote Sensing and Digital Earth, Beijing 100094, China
– sequence: 3
  givenname: H.
  surname: Zhang
  fullname: Zhang, H.
  organization: Chinese Academy of Sciences, Institute of Remote Sensing and Digital Earth, Beijing 100094, China
BookMark eNotkMFqAjEYhNPSQtX2CbzkBdb-yW5MchRpVRAK2p4lm_3XRtZEslmxb9-19TTD8DEMMyQPPngkZMxgwhjo19VittluJxyYnCjGJSh5R4ZMgIZCCybvyYAzkWcSIH8iw7Y99EZxgAE5Lx1GE-23s6ahNZrURaR4SSmaZJMLntYh0lAe0CYa0Ya9-0udpzYcTw1e6Ha2oe5o9ki71vk9PYbK1Q6rHvDn0HRXvi83XQoZehsqjM_ksTZNiy83HZGv97fP-TJbfyxW89k6c0yKlHFlRZlXDFVRa7Ccy4rZknMripLpvMjr2qIFIwo9VSVHicCnllUwRV0qEPmIjP97HSLuTrGfGX92t4_yXzpqYCA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS.2017.8127087
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 1509049517
9781509049516
EISSN 2153-7003
EndPage 857
ExternalDocumentID 8127087
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-28c5b3d1e84f90c227d1cb22c54b19343ffcec0a54968b2e7e026c1d06e9b8053
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426954601003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 20 06:21:00 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-28c5b3d1e84f90c227d1cb22c54b19343ffcec0a54968b2e7e026c1d06e9b8053
PageCount 4
ParticipantIDs ieee_primary_8127087
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 1.6466805
Snippet Automatic target recognition is a crucial task for SAR remote sensing. Unlike other methods, the unsupervised representation learning based on deep...
SourceID ieee
SourceType Publisher
StartPage 854
SubjectTerms automatic target recognition(ATR)
Deep learning
Feature extraction
Image recognition
Kernel
Modified convolutional denoising autoencoder (MCSAE)
Noise reduction
Radar polarimetry
Remote sensing
Representation learning
Stacking
Synthetic aperture radar
synthetic aperture radar(SAR)
Target recognition
Title Hierarchical feature exttratction for object recogition in complex SAR image using modified convolutional auto-encoder
URI https://ieeexplore.ieee.org/document/8127087
WOSCitedRecordID wos000426954601003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1tUXDloxXfZOHSaeedZFnEtoKU0ip0V_K4kQE7U-q06N-bZMaK4MbdEJgJJJl7T5JzzkXolmiaEC6pxxmXXmxprpRR4RGV6JSDULyyzH8i4zGdz9mkge52WhgAcOQz6NpHd5evCrmxR2U9aq9JKWmiJiFppdX6jrqRyWR-7SoU-Kz3OOxPZzNL3SLd-rVf9VNc-hgc_q_jI9T50eHhyS7DHKMG5Cdof-iK8X620XaUWfmwq2byhjU4j05soq11nHV6BWwgKS6EPWvBjirkCFo4y7GjksMHnvWnOFuaoIItA_4VLwuVaQNLsaWj18vSfJxvysKznpcK1h30Mnh4vh95dR0FLzPgoPRCKhMRqQBorJkvw5CoQIowlEksDH6LI60lSJ-brWJKRQgEzMZMBspPgQlq_tJT1MqLHM4QjrmUCdEm3-koZoJxksZBIA3o8rX0qTpHbTt6i1VllbGoB-7i7-ZLdGAnqGK_XqFWud7ANdqT2zJ7X9-4-f0CF6aqOA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA1zKvrkZRPv5sFHu7Vd2iSPQ9wF5xjbhL2NXKXgWpnd0H9vktaJ4ItvJdAGkvT7TpJzzgfALdYkwkwQj1EmPGRproQS7mEZ6ZgpLllhmT_AwyGZzeioAu42WhillCOfqYZ9dHf5MhMre1TWJPaalOAtsB0hFPqFWus77rZMLvNLX6HAp81-tz2eTCx5CzfKF39VUHEJpHPwv64PQf1HiQdHmxxzBCoqPQa7XVeO97MG1r3ECohdPZNXqJVz6YQm3lrPWadYgAaUwozb0xboyEKOogWTFDoyufqAk_YYJgsTVqDlwL_ARSYTbYAptIT0cmGaj7NVnnnW9VKqZR08dx6m9z2vrKTgJQYe5F5IRMRbMlAEaeqLMMQyEDwMRYS4QXCopbVQwmdmsxgTHiqszNZMBNKPFeXE_KcnoJpmqToFEDEhIqxNxtMtRDllOEZBIAzs8rXwiTwDNTt687fCLGNeDtz53803YK83fRrMB_3h4wXYt5NVcGEvQTVfrtQV2BHrPHlfXru5_gIcPa1_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=Hierarchical+feature+exttratction+for+object+recogition+in+complex+SAR+image+using+modified+convolutional+auto-encoder&rft.au=Tian%2C+S.R.&rft.au=Wang%2C+C.&rft.au=Zhang%2C+H.&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=854&rft.epage=857&rft_id=info:doi/10.1109%2FIGARSS.2017.8127087&rft.externalDocID=8127087