Comparing algorithms, representations and operators for the multi-objective knapsack problem
This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for...
Uloženo v:
| Vydáno v: | 2005 IEEE Congress on Evolutionary Computation Ročník 2; s. 1268 - 1275 Vol. 2 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2005
|
| Témata: | |
| ISBN: | 0780393635, 9780780393639 |
| ISSN: | 1089-778X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2. |
|---|---|
| ISBN: | 0780393635 9780780393639 |
| ISSN: | 1089-778X |
| DOI: | 10.1109/CEC.2005.1554836 |

