Comparing algorithms, representations and operators for the multi-objective knapsack problem

This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2005 IEEE Congress on Evolutionary Computation Ročník 2; s. 1268 - 1275 Vol. 2
Hlavní autoři: Colombo, G., Mumford, C.L.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2005
Témata:
ISBN:0780393635, 9780780393639
ISSN:1089-778X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper compares the performance of three evolutionary multi-objective algorithms on the multi-objective knapsack problem. The three algorithms are SPEA2 (strength Pareto evolutionary algorithm, version 2), MOGLS (multi-objective genetic local search) and SEAMO2 (simple evolutionary algorithm for multi-objective optimization, version 2). For each algorithm, we try two representations: bit-string and order-based. Our results suggest that a bit-string representation works best for MOGLS, but that SPEA2 and SEAMO2 perform better with an order-based approach. Although MOGLS outperforms the other algorithms in terms of solution quality, SEAMO2 runs much faster than its competitors and produces results of a similar standard to SPEA2.
ISBN:0780393635
9780780393639
ISSN:1089-778X
DOI:10.1109/CEC.2005.1554836