An incremental grid clustering algorithm based on density-dimension-tree

This paper proposes an approach to improve the existing grid-based clustering algorithms with a further grid partition strategy and an incremental clustering function. This new algorithm IGDDT is based on density-dimension tree, which has the ability to reuse the previous clustering results, and obt...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (International Conference on Machine Learning and Cybernetics.) Ročník 1; s. 356 - 361
Hlavní autoři: Jiaolong Huang, Xiaolong Zhang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2013
Témata:
ISSN:2160-133X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes an approach to improve the existing grid-based clustering algorithms with a further grid partition strategy and an incremental clustering function. This new algorithm IGDDT is based on density-dimension tree, which has the ability to reuse the previous clustering results, and obtain the better clusters by further dividing the grid cell in the clustering process. The experimental results on both artificial and real datasets demonstrate that IGDDT is able to discover arbitrary shape of clusters, better performance than the previous clustering algorithms on both clustering accuracy and clustering efficiency.
ISSN:2160-133X
DOI:10.1109/ICMLC.2013.6890494