On the Effect of Relaxation in the Convergence and Quality of Statistical Image Reconstruction for Emission Tomography Using Block-Iterative Algorithms
Relaxation is widely recognized as a useful tool for providing convergence in block-iterative algorithms [1], [2], [6]. In the present article we give new results on the convergence of RAMLA (Row Action Maximum Likelihood Algorithm) [2], filling some important theoretical gaps. Furthermore, because...
Uloženo v:
| Vydáno v: | XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05) s. 13 - 20 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2005
|
| Témata: | |
| ISBN: | 9780769523897, 0769523897 |
| ISSN: | 1530-1834 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Relaxation is widely recognized as a useful tool for providing convergence in block-iterative algorithms [1], [2], [6]. In the present article we give new results on the convergence of RAMLA (Row Action Maximum Likelihood Algorithm) [2], filling some important theoretical gaps. Furthermore, because RAMLA and OS-EM (Ordered Subsets - Expectation Maximization) [4] are the algorithms for statistical reconstruction currently being used in commercial emission tomography scanners, we present a comparison between them from the viewpoint of a specific imaging task. Our experiments show the importance of relaxation to improve image quality. |
|---|---|
| ISBN: | 9780769523897 0769523897 |
| ISSN: | 1530-1834 |
| DOI: | 10.1109/SIBGRAPI.2005.35 |

