Glaucoma progression detection using variational expectation maximization algorithm

Glaucoma, the second leading cause of blindness worldwide, is an optic neuropthy characterized by distinctive changes in the optic nerve head (ONH) and visual field. In this context, the Heidelberg Retina Tomograph (HRT), a confocal scanning laser technology, has been commonly used to detect glaucom...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2013 IEEE 10th International Symposium on Biomedical Imaging s. 876 - 879
Hlavní autoři: Belghith, Akram, Balasubramanian, Madhusudhanan, Bowd, Christopher, Weinreb, Robert N., Zangwill, Linda M.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2013
Témata:
ISBN:1467364568, 9781467364560
ISSN:1945-7928
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Glaucoma, the second leading cause of blindness worldwide, is an optic neuropthy characterized by distinctive changes in the optic nerve head (ONH) and visual field. In this context, the Heidelberg Retina Tomograph (HRT), a confocal scanning laser technology, has been commonly used to detect glaucoma and monitor its progression. In this paper, we present a new framework for detection of glaucomatour progression using the HRT images. In contrast to previous works that do not integrate a priori knowledge available on the images and particularly the spatial pixel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To our knowledge, the task of inferring the glaucomatous changes with a Variational Expectation Maximization VEM algorithm will be used for the first time in the glaucoma diagnosis framework. We then compared the diagnostic performance of the proposed framework to existing methods of progression detection.
ISBN:1467364568
9781467364560
ISSN:1945-7928
DOI:10.1109/ISBI.2013.6556615