Implementation of regularized Markov clustering algorithm on protein interaction networks of schizophrenia's risk factor candidate genes

Schizophrenia has been suffered by over 21 million people worldwide. Genetic and environmental issues are one of the contributing factors in the development of this disease. Some research shown that several related genes may increase the risk of this disease. Candidate genes that obtained from sever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICACSIS 2016 : proceedings : 2016 International Conference on Advanced Computer Science and Information Systems : October 15-16th, 2016, Malang, East Java S. 297 - 302
Hauptverfasser: Ginanjar, Rizky, Bustamam, Alhadi, Tasman, Hengki
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2016
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Schizophrenia has been suffered by over 21 million people worldwide. Genetic and environmental issues are one of the contributing factors in the development of this disease. Some research shown that several related genes may increase the risk of this disease. Candidate genes that obtained from several research turns up linked in a large network of protein-protein interaction (PPI). Therefore, it is necessary to study the PPI network of the candidate genes. Regularized Markov Clustering Algorithm (RMCL) is a graph clustering method which is the modification of Markov Clustering Algorithm (MCL). RMCL process that is built using R programming language is applied to PPI networks of schizophrenias risk factors candidate genes data obtained from BioGRID database. RMCL algorithm simulation performed with different parameter of inflation. Then, the results of RMCL algorithm simulation is compared to MCL algorithm simulation with the same parameters. RMCL algorithm provides results in the form of overlapping clusters, which mean there are relation between clusters. Thus, based on the results of RMCL algorithm simulation, there are relation between protein clusters of several candidate genes, one of which is the relation of NRG1 and CACNG2 gene product.
AbstractList Schizophrenia has been suffered by over 21 million people worldwide. Genetic and environmental issues are one of the contributing factors in the development of this disease. Some research shown that several related genes may increase the risk of this disease. Candidate genes that obtained from several research turns up linked in a large network of protein-protein interaction (PPI). Therefore, it is necessary to study the PPI network of the candidate genes. Regularized Markov Clustering Algorithm (RMCL) is a graph clustering method which is the modification of Markov Clustering Algorithm (MCL). RMCL process that is built using R programming language is applied to PPI networks of schizophrenias risk factors candidate genes data obtained from BioGRID database. RMCL algorithm simulation performed with different parameter of inflation. Then, the results of RMCL algorithm simulation is compared to MCL algorithm simulation with the same parameters. RMCL algorithm provides results in the form of overlapping clusters, which mean there are relation between clusters. Thus, based on the results of RMCL algorithm simulation, there are relation between protein clusters of several candidate genes, one of which is the relation of NRG1 and CACNG2 gene product.
Author Ginanjar, Rizky
Tasman, Hengki
Bustamam, Alhadi
Author_xml – sequence: 1
  givenname: Rizky
  surname: Ginanjar
  fullname: Ginanjar, Rizky
  email: rizky.ginanjar@sci.ui.ac.id
  organization: Dept. of Math., Univ. Indonesia, Depok, Indonesia
– sequence: 2
  givenname: Alhadi
  surname: Bustamam
  fullname: Bustamam, Alhadi
  email: alhadi@sci.ui.ac.id
  organization: Dept. of Math., Univ. Indonesia, Depok, Indonesia
– sequence: 3
  givenname: Hengki
  surname: Tasman
  fullname: Tasman, Hengki
  email: htasman@sci.ui.ac.id
  organization: Dept. of Math., Univ. Indonesia, Depok, Indonesia
BookMark eNotkEtOwzAYhI0EElB6Alh4x6rFTvyIl6jiUQnEorCuHOd3aprYke2C6Ak4NgG6Gmlm9Ekz5-jYBw8IXVEyp5Som-XidrFaruYFoWIuK1nIQhyhqZIV5UQRJgrFTtE0pXdCCFWiKkp-hr6X_dBBDz7r7ILHweII7a7T0e2hwc86bsMHNt0uZYjOt1h3bYgub3o8tocYMjiPnR9Tbf4IHvJniNv0i0pm4_Zh2ETwTl8nHF3aYjsWQ8RG-8Y1OgNuwUO6QCdWdwmmB52gt_u718Xj7OnlYZz2NHNU8jyjhhlutbB1VStTKRBFzWljVEMFETXXhSZK1kxZyasSAKziJast06yRo1FO0OU_143heoiu1_Frffir_AGpa2gv
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICACSIS.2016.7872726
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781509046294
1509046291
EndPage 302
ExternalDocumentID 7872726
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-1c4c5fa6fb8b9c89e62b51dc9d1606b5a2a097b49f7583eeef9534bf4a4d783e3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406597500048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:10:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-1c4c5fa6fb8b9c89e62b51dc9d1606b5a2a097b49f7583eeef9534bf4a4d783e3
PageCount 6
ParticipantIDs ieee_primary_7872726
PublicationCentury 2000
PublicationDate 2016-Oct.
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-Oct.
PublicationDecade 2010
PublicationTitle ICACSIS 2016 : proceedings : 2016 International Conference on Advanced Computer Science and Information Systems : October 15-16th, 2016, Malang, East Java
PublicationTitleAbbrev ICACSIS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968235
Score 1.7130963
Snippet Schizophrenia has been suffered by over 21 million people worldwide. Genetic and environmental issues are one of the contributing factors in the development of...
SourceID ieee
SourceType Publisher
StartPage 297
SubjectTerms Algorithm design and analysis
Biological system modeling
Chaos
Clustering algorithms
Clustering methods
Markov processes
Protein-Protein Interaction (PPI)
Proteins
Regularized Markov Clustering
Schizophrenia
Title Implementation of regularized Markov clustering algorithm on protein interaction networks of schizophrenia's risk factor candidate genes
URI https://ieeexplore.ieee.org/document/7872726
WOSCitedRecordID wos000406597500048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA7b8ODJj038JgfBi93aNGmaowyHu4zBFHYbSZrMwtZK2-3gL_Bnm6R1U_DirYQ2hTdvk-bN8wHAnTR5w7nmHmGB9rCIsCeoIB7SOLZmjH7MtTOboJNJPJ-zaQs87LgwSikHPlN9e-nO8pNcbmypbGCSC1EUtUGb0qjmau3rKSyKUUgadlzgs8F4-DicjWcWvhX1m0d_eai4JWR09L-XH4PenosHp7tV5gS0VHYKjr7NGGDzbXbBp9P5XTdUogzmGhbOZ75IP1QCLScn30K52lhlBNMT5KtlXqTV2xqau51cQ5pBqx5R1FwHmNUI8dJ2Vf7E5t2X0CLSYe3VA6VlxtjCAVzaibMHXkdPL8Nnr7FZ8FLz71B5gcSSaB5pEQsmY6YiJEiQSJYEZncjCEfcZ1Rgps3eIjRx0YyEWGjMcUJNQ3gGOlmeqXMAY6KISQnBfU2xYr4wE4pCAvFAaJFg_wJ0bWAX77WSxqKJ6eXfzVfg0I5dDZ27Bp2q2KgbcCC3VVoWt274vwDqXbco
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zCnqauonf5iB4sVs_krY5ynBsOMdgE3YbSZrMwtZK2-3gX-CfbZJWp-DFWwltCq-vSd_r7wOAW67yhlJJLUwcaSHmI4sFDFuuRKE2Y7RDKo3ZRDAahbMZGdfA_TcXRghhwGeirQ_Nv_wo5WvdKuuo5HID198Buxipuqdka207KsQPXQ9X_DjHJp1B96E7GUw0gMtvVxf_clExm0iv8b_bH4LWlo0Hx9_7zBGoieQYNL7sGGD1djbBh1H6XVVkogSmEmbGaT6L30UENSsn3UC-XGttBDUTpMtFmsXF6wqqs41gQ5xArR-RlWwHmJQY8VxPlf9E593lUGPSYenWA7nmxujWAVzopbMFXnqP027fqowWrFh9PRSWwxHHkvqShYzwkAjfZdiJOIkcVd8wTF1qk4AhIlV14am4SII9xCSiKArUgHcC6kmaiFMAQyywSgpGbRkgQWymlhThMpc6TLII2WegqQM7fyu1NOZVTM__Hr4B-_3p83A-HIyeLsCBfo4lkO4S1ItsLa7AHt8UcZ5dm1T4BJTQum8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ICACSIS+2016+%3A+proceedings+%3A+2016+International+Conference+on+Advanced+Computer+Science+and+Information+Systems+%3A+October+15-16th%2C+2016%2C+Malang%2C+East+Java&rft.atitle=Implementation+of+regularized+Markov+clustering+algorithm+on+protein+interaction+networks+of+schizophrenia%27s+risk+factor+candidate+genes&rft.au=Ginanjar%2C+Rizky&rft.au=Bustamam%2C+Alhadi&rft.au=Tasman%2C+Hengki&rft.date=2016-10-01&rft.pub=IEEE&rft.spage=297&rft.epage=302&rft_id=info:doi/10.1109%2FICACSIS.2016.7872726&rft.externalDocID=7872726