A deep learning based noise reduction approach to improve speech intelligibility for cochlear implant recipients in the presence of competing speech noise

This paper presents the clinical results of the application of a deep-learning-based noise reduction (NR) approach to improve speech intelligibility for cochlear implant (CI) recipients in the presence of competing speech noise. The deep denoising autoencoder (DDAE) model was used as a representativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APSIPA ASC 2017 : proceedings, ninth Asia-Pacific Signal and Information Processing Association Annual Summit and Conference : 12-15 December 2017, Kuala Lumpur, Malaysia S. 808 - 812
Hauptverfasser: Syu-Siang Wang, Yu Tsao, Wang, Hsiao-Lan Sharon, Ying-Hui Lai, Li, Lieber Po-Hung
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2017
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!