Improving Plagiarism Detection Using Genetic Algorithm

Detecting instances of plagiarism in student home-work, with program code in particular, is a subject of active research for over 30 years. One of the early proposed methods was extraction and comparison of source-code metrics. Even though this approach has low algorithmic complexity, it is rarely u...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) s. 571 - 576
Hlavní autori: Pajic, Enil, Ljubovic, Vedran
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Croatian Society MIPRO 01.05.2019
Predmet:
ISSN:2623-8764
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Detecting instances of plagiarism in student home-work, with program code in particular, is a subject of active research for over 30 years. One of the early proposed methods was extraction and comparison of source-code metrics. Even though this approach has low algorithmic complexity, it is rarely used in recent papers with some authors claiming that better results are obtained using other methods. In this paper, plagiarism detection is treated as an information retrieval problem, specifically query-by-example (QbE). A feature vector is constructed from source metrics and compared using common similarity measures. Further, evolutionary computation methods are used to optimize the similarity measure. It is shown that, by several metrics used, detection results are on par with state-of-the-art methods with significantly lower execution time.
AbstractList Detecting instances of plagiarism in student home-work, with program code in particular, is a subject of active research for over 30 years. One of the early proposed methods was extraction and comparison of source-code metrics. Even though this approach has low algorithmic complexity, it is rarely used in recent papers with some authors claiming that better results are obtained using other methods. In this paper, plagiarism detection is treated as an information retrieval problem, specifically query-by-example (QbE). A feature vector is constructed from source metrics and compared using common similarity measures. Further, evolutionary computation methods are used to optimize the similarity measure. It is shown that, by several metrics used, detection results are on par with state-of-the-art methods with significantly lower execution time.
Author Pajic, Enil
Ljubovic, Vedran
Author_xml – sequence: 1
  givenname: Enil
  surname: Pajic
  fullname: Pajic, Enil
  organization: Faculty of Electrical Engineering, University of Sarajevo, BiH
– sequence: 2
  givenname: Vedran
  surname: Ljubovic
  fullname: Ljubovic, Vedran
  organization: Faculty of Electrical Engineering, University of Sarajevo, BiH
BookMark eNotj9tKw0AURUdRsK39gr7kBxLndubyWKrWQKVF7HOZzJzEgWRSkiD49yrt02axYMGek7vUJyRkxWjBhWX26b08fOwLTpktjAalpbwhcwuCC0GtkbdkxhUXudFKPpDlOMaKSi41pVbNiCq789B_x9Rkh9Y10Q1x7LJnnNBPsU_ZcfxXW0w4RZ-t26Yf4vTVPZL72rUjLq-7IMfXl8_NW77bb8vNepdHpmHKmVHMo68hGK-1AahkcEE6rmvg3DOjJQuG1gh_bBlYCM6KWoGqnHAgxIKsLt2IiKfzEDs3_JyuN8UvN4ZIXg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/MIPRO.2019.8756744
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9532330984
9789532330984
EISSN 2623-8764
EndPage 576
ExternalDocumentID 8756744
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
M43
RIE
RIL
ID FETCH-LOGICAL-i175t-1861cecf5d8c77855b4dad4a27f522c18741d80fe5f5291595da93f656ba3a533
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484544500104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Sep 10 07:40:52 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-1861cecf5d8c77855b4dad4a27f522c18741d80fe5f5291595da93f656ba3a533
PageCount 6
ParticipantIDs ieee_primary_8756744
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationTitle 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
PublicationTitleAbbrev MIPRO
PublicationYear 2019
Publisher Croatian Society MIPRO
Publisher_xml – name: Croatian Society MIPRO
SSID ssib042470096
Score 1.7068144
Snippet Detecting instances of plagiarism in student home-work, with program code in particular, is a subject of active research for over 30 years. One of the early...
SourceID ieee
SourceType Publisher
StartPage 571
SubjectTerms Codes
Feature extraction
Genetic algorithms
Microelectronics
Plagiarism
plagiarism detection
Production
real-coded genetic algorithm
Software measurement
Source coding
Statistical analysis
Vectors
Title Improving Plagiarism Detection Using Genetic Algorithm
URI https://ieeexplore.ieee.org/document/8756744
WOSCitedRecordID wos000484544500104&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1t8eBJpRW_2YNH12422U1yFLUoaF1EpbeSz7rQbkvd-vudZGtF8OItCSQhyYR5JG_mIXQuhBFKg_ECFM1iKpIk5lrJOE8py7RyigSViLcHNhzy0UgULXSxiYWx1gbymb30xfCXb-Z65Z_K-oCtc0ZpG7UZY02s1rftUBjbw_EmsVBKBBb9x_vi-cmzt8Acmp6_JFSCBxns_G_uXdT7CcWLio2T2UMtW3VRvnkKiIqpnJReSHAW3dg68KqqKPAAIp9RGswiuppO5suyfp_10Ovg9uX6Ll4LIMQlePU6xjzH2mqXGa4Zg81U1EhDZcocwCbt5fSw4YmzGdQFAJPMSEEcQDQliQQgt4861byyBygyQmIqiSGYQieVcpxxpZzTNCEWbv0h6vo1jxdNjovxerlHfzcfo22_rQ3x7wR16uXKnqIt_VmXH8uzcDBfiB-Osg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmuhJDRjf7sGjK9tt99GjUQlEwI1Bw430tbAJLAYXf7_TXcSYePHWNmmbttPMl_ab-QCuOddcKjRehKKBy7jnubGSwg19FgVKppKWKhFvvWgwiEcjntTgZhMLY4wpyWfm1hbLv3y9UCv7VNZCbB1GjG3BdsCYT6porW_rYTi6BeRVaiGfcsJb_W7y8mz5W2gQVd9fIiqlD2nv_2_2A2j-BOM5ycbNHELN5A0IN48BTjITk8xKCc6dB1OUzKrcKZkAjs0pjYbh3M0mi2VWTOdNeG0_Du877loCwc3QrxcuiUOijEoDHasowu2UTAvNhB-lCJyUFdQjOvZSE2CdIzQJtOA0RZAmBRUI5Y6gni9ycwyO5oIwQTUlDDtJPyZBLGWaKuZRg_f-BBp2zeP3KsvFeL3c07-br2C3M-z3xr3u4OkM9uwWVzTAc6gXy5W5gB31WWQfy8vykL4AJwCR-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2019+42nd+International+Convention+on+Information+and+Communication+Technology%2C+Electronics+and+Microelectronics+%28MIPRO%29&rft.atitle=Improving+Plagiarism+Detection+Using+Genetic+Algorithm&rft.au=Pajic%2C+Enil&rft.au=Ljubovic%2C+Vedran&rft.date=2019-05-01&rft.pub=Croatian+Society+MIPRO&rft.eissn=2623-8764&rft.spage=571&rft.epage=576&rft_id=info:doi/10.23919%2FMIPRO.2019.8756744&rft.externalDocID=8756744