Unsupervised Convolutional Autoencoder-Based Feature Learning for Automatic Detection of Plant Diseases

Developing an automatic detector of plant diseases is one of application fields in machine learning. Ground-truth diagnoses of plant diseases which are conducted by experts in laboratory tests are often inapplicable for fast and cheap implementations. Using machine learning approaches, the images of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 International Conference on Computer, Control, Informatics and Its Applications (IC3INA) s. 158 - 162
Hlavní autoři: Pardede, Hilman F., Suryawati, Endang, Sustika, Rika, Zilvan, Vicky
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2018
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Developing an automatic detector of plant diseases is one of application fields in machine learning. Ground-truth diagnoses of plant diseases which are conducted by experts in laboratory tests are often inapplicable for fast and cheap implementations. Using machine learning approaches, the images of leaves or fruits are used as input data. From the data, we design discriminative features that are good for diseases classification. However, finding suitable features from the images are often challenging due to high intra-variability and inter-variability of the data. In this paper, we present an unsupervised feature learning algorithm using the convolutional autoencoder for detection of plant diseases. The use of convolutional autoencoder has two main advantages. First, the use of handcrafted features is not necessary as the network itself may learn to produce discriminative features. Secondly, the procedure is conducted in an unsupervised manner and hence, no labeling of the data are required. Here, we use the output of the autoencoder as inputs to SVM-based classifiers for automatic detection of plant diseases. The method indicates to be better than conventional autoencoder with more hidden layers.
AbstractList Developing an automatic detector of plant diseases is one of application fields in machine learning. Ground-truth diagnoses of plant diseases which are conducted by experts in laboratory tests are often inapplicable for fast and cheap implementations. Using machine learning approaches, the images of leaves or fruits are used as input data. From the data, we design discriminative features that are good for diseases classification. However, finding suitable features from the images are often challenging due to high intra-variability and inter-variability of the data. In this paper, we present an unsupervised feature learning algorithm using the convolutional autoencoder for detection of plant diseases. The use of convolutional autoencoder has two main advantages. First, the use of handcrafted features is not necessary as the network itself may learn to produce discriminative features. Secondly, the procedure is conducted in an unsupervised manner and hence, no labeling of the data are required. Here, we use the output of the autoencoder as inputs to SVM-based classifiers for automatic detection of plant diseases. The method indicates to be better than conventional autoencoder with more hidden layers.
Author Zilvan, Vicky
Suryawati, Endang
Pardede, Hilman F.
Sustika, Rika
Author_xml – sequence: 1
  givenname: Hilman F.
  surname: Pardede
  fullname: Pardede, Hilman F.
  organization: Research Center for Informatics, Indonesian Institute of Sciences, Bandung, Indonesia
– sequence: 2
  givenname: Endang
  surname: Suryawati
  fullname: Suryawati, Endang
  organization: Research Center for Informatics, Indonesian Institute of Sciences, Bandung, Indonesia
– sequence: 3
  givenname: Rika
  surname: Sustika
  fullname: Sustika, Rika
  organization: Research Center for Informatics, Indonesian Institute of Sciences, Bandung, Indonesia
– sequence: 4
  givenname: Vicky
  surname: Zilvan
  fullname: Zilvan, Vicky
  organization: Research Center for Informatics, Indonesian Institute of Sciences, Bandung, Indonesia
BookMark eNotkMtOwzAURI0EErT0C7rxD6T4xo84y5JSiFQBC7quHOemMkrtynEq8fe00NUsZs5ZzITc-uCRkDmwBQArn-qK1-_LRc5AL7TKSwn6hkxAcq1kIUDck9kwfDPGcqW5kPqB7Ld-GI8YT27AllbBn0I_Jhe86elyTAG9DS3G7Nlc-jWaNEakGzTRO7-nXYh_s4NJztIVJrQXmIaOfvbGJ7o6e8_o8EjuOtMPOLvmlGzXL1_VW7b5eK2r5SZzUMiUgWK20KoF3ilhOFMNamnLAptSKC7OwVtQwFstWWu60pRWCytz0AiqMQ2fkvm_1yHi7hjdwcSf3fUL_gv0eFil
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IC3INA.2018.8629518
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1538657414
9781538657416
EndPage 162
ExternalDocumentID 8629518
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-160c786d13f64a306be85c97eb94634eb93d1613d850daf9a9c84c5218e16bab3
IEDL.DBID RIE
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459872600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 03:05:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-160c786d13f64a306be85c97eb94634eb93d1613d850daf9a9c84c5218e16bab3
PageCount 5
ParticipantIDs ieee_primary_8629518
PublicationCentury 2000
PublicationDate 2018-Nov.
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov.
PublicationDecade 2010
PublicationTitle 2018 International Conference on Computer, Control, Informatics and Its Applications (IC3INA)
PublicationTitleAbbrev IC3INA
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683458
Score 1.9401649
Snippet Developing an automatic detector of plant diseases is one of application fields in machine learning. Ground-truth diagnoses of plant diseases which are...
SourceID ieee
SourceType Publisher
StartPage 158
SubjectTerms convolutional autoen-coder
Deep learning
Diseases
Feature extraction
feature learning
Kernel
Plant diseases detection
Support vector machines
SVM
Training
Title Unsupervised Convolutional Autoencoder-Based Feature Learning for Automatic Detection of Plant Diseases
URI https://ieeexplore.ieee.org/document/8629518
WOSCitedRecordID wos000459872600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27bsIwFLUAdehEW6j6loeODSTEsZ2RQlFZEEOR2JAf1wipShBJ-P7aTkpVqUsnW37Ikh-6x_a95yD0HMvUgFYksKZABiTyTgAmCUaShUwKKmWqvNgEWyz4ep0uW-jlFAsDAN75DAYu6__yda4q91Q2tOjbAgLeRm3GaB2rdXpPGVEek4Q3xEJRmA7nk3i-GDvvLT5oev6SUPEWZNb939gXqP8TioeXJyNziVqQXaHutxYDbo5mD21XWVHt3cEvQGPb-djsKfGJx1WZO75KDYfgVbh6B_yqA-CGXXWLLXT1zTyBK55C6T20Mpwb7GSNSjytP3KKPlrN3j4m70EjohDsLDIog4iGinGqo9hQIuwFQQJPVMpApoTGxCaxtqgv1jwJtTCpSBUnyhp1DhGVQsbXqJPlGdwgzGkkmXHMoaEhxnBu0QsPISGCADAub1HPzdtmX_NkbJopu_u7-B6du6Wp4_oeUKc8VPCIztSx3BWHJ7-4X6cPp5E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4QTfQJFYx3--Cjg411XfuIIIGICw-Q8EbW7ZSQmI3swu-37SbGxBef2vSSJr3kfG3P-T6Enl3BJcQRsZQpEBZxjBOA9Ky-8G1fhFQIHhmxCT8I2GrF5w30coiFAQDjfAZdnTV_-XEalfqprKfQtwIE7Agde4T07Spa6_Ci0qfMJR6rqYUcm_emQ3caDLT_FuvWfX-JqBgbMm79b_Rz1PkJxsPzg5m5QA1ILlHrW40B14ezjTbLJC93-ujnEGPVeV_vqvATD8oi1YyVMWTWa6jrNfQrM8A1v-oGK_BqmhkKVzyCwvhoJTiVWAsbFXhUfeXkHbQcvy2GE6uWUbC2ChsUlkPtyGc0dlxJSaiuCAKYF3EfBCfUJSpxY4X73Jh5dhxKHvKIkUiZdQYOFaFwr1AzSRO4RphRR_hSc4fakkjJmMIvzAaPhATAZ-IGtfW8rXcVU8a6nrLbv4uf0Olk8TFbz6bB-x0608tURfndo2aRlfCATqJ9sc2zR7PQX4pFqtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+International+Conference+on+Computer%2C+Control%2C+Informatics+and+Its+Applications+%28IC3INA%29&rft.atitle=Unsupervised+Convolutional+Autoencoder-Based+Feature+Learning+for+Automatic+Detection+of+Plant+Diseases&rft.au=Pardede%2C+Hilman+F.&rft.au=Suryawati%2C+Endang&rft.au=Sustika%2C+Rika&rft.au=Zilvan%2C+Vicky&rft.date=2018-11-01&rft.pub=IEEE&rft.spage=158&rft.epage=162&rft_id=info:doi/10.1109%2FIC3INA.2018.8629518&rft.externalDocID=8629518