Analysis of a Block Arithmetic Coding: Discrete divide and conquer recurrences
In 1993 Boncelet introduced a block arithmetic scheme for entropy coding that combines advantages of stream arithmetic coding with algorithmic simplicity. It is a variable-to-fixed length encoding in which the source sequence is partitioned into variable length phrases that are encoded by a fixed le...
Gespeichert in:
| Veröffentlicht in: | 2011 IEEE International Symposium on Information Theory Proceedings S. 1317 - 1321 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.07.2011
|
| Schlagworte: | |
| ISBN: | 1457705966, 9781457705960 |
| ISSN: | 2157-8095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In 1993 Boncelet introduced a block arithmetic scheme for entropy coding that combines advantages of stream arithmetic coding with algorithmic simplicity. It is a variable-to-fixed length encoding in which the source sequence is partitioned into variable length phrases that are encoded by a fixed length dictionary pointer. The parsing is accomplished through a complete parsing tree whose leaves represent phrases. This tree, in its suboptimal heuristic version, is constructed by a simple divide and conquer algorithm, whose analysis is the subject of this paper. For a memoryless source, we first derive the average redundancy and compare it to the (asymptotically) optimal Tunstall's algorithm. Then we prove a central limit theorem for the phrase length. To establish these results, we apply powerful techniques such as Dirichlet series, Mellin-Perron formula, and (extended) Tauberian theorems of Wiener-Ikehara. |
|---|---|
| ISBN: | 1457705966 9781457705960 |
| ISSN: | 2157-8095 |
| DOI: | 10.1109/ISIT.2011.6033751 |

