Analysis of a Block Arithmetic Coding: Discrete divide and conquer recurrences

In 1993 Boncelet introduced a block arithmetic scheme for entropy coding that combines advantages of stream arithmetic coding with algorithmic simplicity. It is a variable-to-fixed length encoding in which the source sequence is partitioned into variable length phrases that are encoded by a fixed le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2011 IEEE International Symposium on Information Theory Proceedings S. 1317 - 1321
Hauptverfasser: Drmota, M., Szpankowski, W.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2011
Schlagworte:
ISBN:1457705966, 9781457705960
ISSN:2157-8095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1993 Boncelet introduced a block arithmetic scheme for entropy coding that combines advantages of stream arithmetic coding with algorithmic simplicity. It is a variable-to-fixed length encoding in which the source sequence is partitioned into variable length phrases that are encoded by a fixed length dictionary pointer. The parsing is accomplished through a complete parsing tree whose leaves represent phrases. This tree, in its suboptimal heuristic version, is constructed by a simple divide and conquer algorithm, whose analysis is the subject of this paper. For a memoryless source, we first derive the average redundancy and compare it to the (asymptotically) optimal Tunstall's algorithm. Then we prove a central limit theorem for the phrase length. To establish these results, we apply powerful techniques such as Dirichlet series, Mellin-Perron formula, and (extended) Tauberian theorems of Wiener-Ikehara.
ISBN:1457705966
9781457705960
ISSN:2157-8095
DOI:10.1109/ISIT.2011.6033751