CuSP: A Customizable Streaming Edge Partitioner for Distributed Graph Analytics
Graph analytics systems must analyze graphs with billions of vertices and edges which require several terabytes of storage. Distributed-memory clusters are often used for analyzing such large graphs since the main memory of a single machine is usually restricted to a few hundreds of gigabytes. This...
Uloženo v:
| Vydáno v: | Proceedings - IEEE International Parallel and Distributed Processing Symposium s. 439 - 450 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2019
|
| Témata: | |
| ISSN: | 1530-2075 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Graph analytics systems must analyze graphs with billions of vertices and edges which require several terabytes of storage. Distributed-memory clusters are often used for analyzing such large graphs since the main memory of a single machine is usually restricted to a few hundreds of gigabytes. This requires partitioning the graph among the machines in the cluster. Existing graph analytics systems usually come with a built-in partitioner that incorporates a particular partitioning policy, but the best partitioning policy is dependent on the algorithm, input graph, and platform. Therefore, built-in partitioners are not sufficiently flexible. Stand-alone graph partitioners are available, but they too implement only a small number of partitioning policies. This paper presents CuSP, a fast streaming edge partitioning framework which permits users to specify the desired partitioning policy at a high level of abstraction and generates high-quality graph partitions fast. For example, it can partition wdc12, the largest publicly available web-crawl graph, with 4 billion vertices and 129 billion edges, in under 2 minutes for clusters with 128 machines. Our experiments show that it can produce quality partitions 6× faster on average than the state-of-the-art standalone partitioner in the literature while supporting a wider range of partitioning policies. |
|---|---|
| ISSN: | 1530-2075 |
| DOI: | 10.1109/IPDPS.2019.00054 |