Using Load Balancing to Scalably Parallelize Sampling-Based Motion Planning Algorithms

Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recen...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings - IEEE International Parallel and Distributed Processing Symposium pp. 573 - 582
Main Authors: Fidel, Adam, Jacobs, Sam Ade, Sharma, Shishir, Amato, Nancy M., Rauchwerger, Lawrence
Format: Conference Proceeding
Language:English
Published: IEEE 01.05.2014
Subjects:
ISBN:1479937991, 9781479937998
ISSN:1530-2075
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recent work introduced uniform spatial subdivision techniques for parallelizing sampling-based motion planning algorithms that scaled well. However, such methods are prone to load imbalance, as planning time depends on region characteristics and, for most problems, the heterogeneity of the sub problems increases as the number of processors increases. In this work, we introduce two techniques to address load imbalance in the parallelization of sampling-based motion planning algorithms: an adaptive work stealing approach and bulk-synchronous redistribution. We show that applying these techniques to representatives of the two major classes of parallel sampling-based motion planning algorithms, probabilistic roadmaps and rapidly-exploring random trees, results in a more scalable and load-balanced computation on more than 3,000 cores.
AbstractList Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recent work introduced uniform spatial subdivision techniques for parallelizing sampling-based motion planning algorithms that scaled well. However, such methods are prone to load imbalance, as planning time depends on region characteristics and, for most problems, the heterogeneity of the sub problems increases as the number of processors increases. In this work, we introduce two techniques to address load imbalance in the parallelization of sampling-based motion planning algorithms: an adaptive work stealing approach and bulk-synchronous redistribution. We show that applying these techniques to representatives of the two major classes of parallel sampling-based motion planning algorithms, probabilistic roadmaps and rapidly-exploring random trees, results in a more scalable and load-balanced computation on more than 3,000 cores.
Author Sharma, Shishir
Fidel, Adam
Amato, Nancy M.
Rauchwerger, Lawrence
Jacobs, Sam Ade
Author_xml – sequence: 1
  givenname: Adam
  surname: Fidel
  fullname: Fidel, Adam
  email: fidel@cse.tamu.edu
  organization: Dept. of Comput. Sci. & Eng., Texas A&M Univ., College Station, TX, USA
– sequence: 2
  givenname: Sam Ade
  surname: Jacobs
  fullname: Jacobs, Sam Ade
  email: sam.jacobs@us.abb.com
  organization: ABB Corp. Res., Raleigh, NC, USA
– sequence: 3
  givenname: Shishir
  surname: Sharma
  fullname: Sharma, Shishir
  email: shishir.sharma@microsoft.com
  organization: Microsoft Corp., Redmond, WA, USA
– sequence: 4
  givenname: Nancy M.
  surname: Amato
  fullname: Amato, Nancy M.
  email: amato@cse.tamu.edu
  organization: Dept. of Comput. Sci. & Eng., Texas A&M Univ., College Station, TX, USA
– sequence: 5
  givenname: Lawrence
  surname: Rauchwerger
  fullname: Rauchwerger, Lawrence
  email: rwerger@cse.tamu.edu
  organization: Dept. of Comput. Sci. & Eng., Texas A&M Univ., College Station, TX, USA
BookMark eNotjM1OwkAYRceIiRRZunIzL9A63_x2loB_JBibIG7JN-2AY4aWtN3g01uCi5ubk9xzEzKqm9oTcg8sA2D2cVk8FeuMM5CZ1ldkak0O0lgrcsbgmiQXGAIjMgYlWMqZUbck6bofxjgT0o7J16YL9Z6uGqzoHCPW5Rn7hq7LgVw80QJbjNHH8OvpGg_HOAzSOXa-ou9NH5qaFoNWn7VZ3Ddt6L8P3R252WHs_PS_J2Tz8vy5eEtXH6_LxWyVBjCqTwGkR-FzBc6hKZ3IK67QcOkUSq650FyXHqysBOPaa-XA6R0qy4WrwAsxIQ-X3-C93x7bcMD2tNW5Mdwy8QcKeFQo
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPDPS.2014.66
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479938001
1479938009
EndPage 582
ExternalDocumentID 6877290
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-114ea3e851bba7cb38d25a724b5a42623626ce194d3026e65b1b6fa5923bd1e33
IEDL.DBID RIE
ISBN 1479937991
9781479937998
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346498300054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-2075
IngestDate Wed Aug 27 04:20:14 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-114ea3e851bba7cb38d25a724b5a42623626ce194d3026e65b1b6fa5923bd1e33
PageCount 10
ParticipantIDs ieee_primary_6877290
PublicationCentury 2000
PublicationDate 2014-May
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-May
PublicationDecade 2010
PublicationTitle Proceedings - IEEE International Parallel and Distributed Processing Symposium
PublicationTitleAbbrev IPDPS
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020349
ssib026764574
Score 1.5556254
Snippet Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from...
SourceID ieee
SourceType Publisher
StartPage 573
SubjectTerms Joining processes
Load management
Measurement
Planning
Probabilistic logic
Program processors
Proteins
Title Using Load Balancing to Scalably Parallelize Sampling-Based Motion Planning Algorithms
URI https://ieeexplore.ieee.org/document/6877290
WOSCitedRecordID wos000346498300054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEN3UxoOnqq3xO3vwKC1lWRaOVm00qQ1J1fTW7LLTSlLBUGqiv94dPloPXrwxhAOZXZg38OY9Qq6E43OY29xy9dyx3MC3LWlzZUXC9oXDtekhCsn8kRiP_ek0CBvkejMLAwAF-Qy6eFj8y9dptMZPZT3PRyxoGvQdIbxyVqveO44nPJcjlKmaLdRdKbVSbbMTBC-GugRWY4OIaq2nKva34pu9x_AunCDly-2icuIvy5Wi4gxb_7vXfdLZju7RcFOUDkgDkkPSqr0baPUot8lrwRWgo1RqOkB6Y4RhnporTKSWXzSUGfqsLONvoBOJxPNkYQ1M0dP0qbD-obXhEb1ZLtIszt_eVx3yMrx_vn2wKo8FKzbAIbdMOwSSgcFdSkkRKeZrh0vhuIpLFKtHtZoI-oGrmckxeFz1lTeX3OBCpfvA2BFpJmkCx4QGEBnwEzCXAbgGOJg3AzAOwqyM9JUDJ6SNaZp9lDIasypDp3-fPiN7uAglt_CcNPNsDRdkN_rM41V2Waz9DxJQp9A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEN001URPVVvjt3vwKC0FloWjVRsbaUPSanprdmFaSSoYSk3017vDR-vBizeGcCC7A_MG3rxHyA03HAZznWlWODc0y3V0TehMagHXHW6wUPUQuWS-x0cjZzp1_Rq53czCAEBOPoM2Hub_8sMkWOOnso7tIBZUDfoOOmexYlqryh7D5rbFEMyU7RYqrxRqqbrKBc7ysS6O9VhhokrtqYydrfxmZ-A_-GMkfVlt1E78ZbqS15x-4393e0Ba2-E96m_K0iGpQXxEGpV7Ay0f5iZ5zdkC1EtESHtIcAwwzBJ1hYrk8ov6IkWnlWX0DXQskHoeL7SeKnshHebmP7SyPKJ3y0WSRtnb-6pFXvqPk_snrXRZ0CIFHTJNNUQgTFDIS0rBA2k6ocEENyzJBMrVo15NAF3XCk21xmAz2ZX2XDCFDGXYBdM8JvU4ieGEUBcCBX9c0zIBLAUd1LsBTAZc7YxwpAGnpInLNPsohDRm5Qqd_X36muw9TYbezBuMns_JPm5IwTS8IPUsXcMl2Q0-s2iVXuV58AMKNKsb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Parallel+and+Distributed+Processing+Symposium&rft.atitle=Using+Load+Balancing+to+Scalably+Parallelize+Sampling-Based+Motion+Planning+Algorithms&rft.au=Fidel%2C+Adam&rft.au=Jacobs%2C+Sam+Ade&rft.au=Sharma%2C+Shishir&rft.au=Amato%2C+Nancy+M.&rft.date=2014-05-01&rft.pub=IEEE&rft.isbn=1479937991&rft.issn=1530-2075&rft.spage=573&rft.epage=582&rft_id=info:doi/10.1109%2FIPDPS.2014.66&rft.externalDocID=6877290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-2075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-2075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-2075&client=summon