Using Load Balancing to Scalably Parallelize Sampling-Based Motion Planning Algorithms
Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recen...
Saved in:
| Published in: | Proceedings - IEEE International Parallel and Distributed Processing Symposium pp. 573 - 582 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.05.2014
|
| Subjects: | |
| ISBN: | 1479937991, 9781479937998 |
| ISSN: | 1530-2075 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recent work introduced uniform spatial subdivision techniques for parallelizing sampling-based motion planning algorithms that scaled well. However, such methods are prone to load imbalance, as planning time depends on region characteristics and, for most problems, the heterogeneity of the sub problems increases as the number of processors increases. In this work, we introduce two techniques to address load imbalance in the parallelization of sampling-based motion planning algorithms: an adaptive work stealing approach and bulk-synchronous redistribution. We show that applying these techniques to representatives of the two major classes of parallel sampling-based motion planning algorithms, probabilistic roadmaps and rapidly-exploring random trees, results in a more scalable and load-balanced computation on more than 3,000 cores. |
|---|---|
| AbstractList | Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recent work introduced uniform spatial subdivision techniques for parallelizing sampling-based motion planning algorithms that scaled well. However, such methods are prone to load imbalance, as planning time depends on region characteristics and, for most problems, the heterogeneity of the sub problems increases as the number of processors increases. In this work, we introduce two techniques to address load imbalance in the parallelization of sampling-based motion planning algorithms: an adaptive work stealing approach and bulk-synchronous redistribution. We show that applying these techniques to representatives of the two major classes of parallel sampling-based motion planning algorithms, probabilistic roadmaps and rapidly-exploring random trees, results in a more scalable and load-balanced computation on more than 3,000 cores. |
| Author | Sharma, Shishir Fidel, Adam Amato, Nancy M. Rauchwerger, Lawrence Jacobs, Sam Ade |
| Author_xml | – sequence: 1 givenname: Adam surname: Fidel fullname: Fidel, Adam email: fidel@cse.tamu.edu organization: Dept. of Comput. Sci. & Eng., Texas A&M Univ., College Station, TX, USA – sequence: 2 givenname: Sam Ade surname: Jacobs fullname: Jacobs, Sam Ade email: sam.jacobs@us.abb.com organization: ABB Corp. Res., Raleigh, NC, USA – sequence: 3 givenname: Shishir surname: Sharma fullname: Sharma, Shishir email: shishir.sharma@microsoft.com organization: Microsoft Corp., Redmond, WA, USA – sequence: 4 givenname: Nancy M. surname: Amato fullname: Amato, Nancy M. email: amato@cse.tamu.edu organization: Dept. of Comput. Sci. & Eng., Texas A&M Univ., College Station, TX, USA – sequence: 5 givenname: Lawrence surname: Rauchwerger fullname: Rauchwerger, Lawrence email: rwerger@cse.tamu.edu organization: Dept. of Comput. Sci. & Eng., Texas A&M Univ., College Station, TX, USA |
| BookMark | eNotjM1OwkAYRceIiRRZunIzL9A63_x2loB_JBibIG7JN-2AY4aWtN3g01uCi5ubk9xzEzKqm9oTcg8sA2D2cVk8FeuMM5CZ1ldkak0O0lgrcsbgmiQXGAIjMgYlWMqZUbck6bofxjgT0o7J16YL9Z6uGqzoHCPW5Rn7hq7LgVw80QJbjNHH8OvpGg_HOAzSOXa-ou9NH5qaFoNWn7VZ3Ddt6L8P3R252WHs_PS_J2Tz8vy5eEtXH6_LxWyVBjCqTwGkR-FzBc6hKZ3IK67QcOkUSq650FyXHqysBOPaa-XA6R0qy4WrwAsxIQ-X3-C93x7bcMD2tNW5Mdwy8QcKeFQo |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IPDPS.2014.66 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781479938001 1479938009 |
| EndPage | 582 |
| ExternalDocumentID | 6877290 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-114ea3e851bba7cb38d25a724b5a42623626ce194d3026e65b1b6fa5923bd1e33 |
| IEDL.DBID | RIE |
| ISBN | 1479937991 9781479937998 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346498300054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-2075 |
| IngestDate | Wed Aug 27 04:20:14 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-114ea3e851bba7cb38d25a724b5a42623626ce194d3026e65b1b6fa5923bd1e33 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_6877290 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-May |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-May |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings - IEEE International Parallel and Distributed Processing Symposium |
| PublicationTitleAbbrev | IPDPS |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020349 ssib026764574 |
| Score | 1.5556254 |
| Snippet | Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 573 |
| SubjectTerms | Joining processes Load management Measurement Planning Probabilistic logic Program processors Proteins |
| Title | Using Load Balancing to Scalably Parallelize Sampling-Based Motion Planning Algorithms |
| URI | https://ieeexplore.ieee.org/document/6877290 |
| WOSCitedRecordID | wos000346498300054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEN3UxoOnqq3xO3vwKC1lWRaOVm00qQ1J1fTW7LLTSlLBUGqiv94dPloPXrwxhAOZXZg38OY9Qq6E43OY29xy9dyx3MC3LWlzZUXC9oXDtekhCsn8kRiP_ek0CBvkejMLAwAF-Qy6eFj8y9dptMZPZT3PRyxoGvQdIbxyVqveO44nPJcjlKmaLdRdKbVSbbMTBC-GugRWY4OIaq2nKva34pu9x_AunCDly-2icuIvy5Wi4gxb_7vXfdLZju7RcFOUDkgDkkPSqr0baPUot8lrwRWgo1RqOkB6Y4RhnporTKSWXzSUGfqsLONvoBOJxPNkYQ1M0dP0qbD-obXhEb1ZLtIszt_eVx3yMrx_vn2wKo8FKzbAIbdMOwSSgcFdSkkRKeZrh0vhuIpLFKtHtZoI-oGrmckxeFz1lTeX3OBCpfvA2BFpJmkCx4QGEBnwEzCXAbgGOJg3AzAOwqyM9JUDJ6SNaZp9lDIasypDp3-fPiN7uAglt_CcNPNsDRdkN_rM41V2Waz9DxJQp9A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEN001URPVVvjt3vwKC0FloWjVRsbaUPSanprdmFaSSoYSk3017vDR-vBizeGcCC7A_MG3rxHyA03HAZznWlWODc0y3V0TehMagHXHW6wUPUQuWS-x0cjZzp1_Rq53czCAEBOPoM2Hub_8sMkWOOnso7tIBZUDfoOOmexYlqryh7D5rbFEMyU7RYqrxRqqbrKBc7ysS6O9VhhokrtqYydrfxmZ-A_-GMkfVlt1E78ZbqS15x-4393e0Ba2-E96m_K0iGpQXxEGpV7Ay0f5iZ5zdkC1EtESHtIcAwwzBJ1hYrk8ov6IkWnlWX0DXQskHoeL7SeKnshHebmP7SyPKJ3y0WSRtnb-6pFXvqPk_snrXRZ0CIFHTJNNUQgTFDIS0rBA2k6ocEENyzJBMrVo15NAF3XCk21xmAz2ZX2XDCFDGXYBdM8JvU4ieGEUBcCBX9c0zIBLAUd1LsBTAZc7YxwpAGnpInLNPsohDRm5Qqd_X36muw9TYbezBuMns_JPm5IwTS8IPUsXcMl2Q0-s2iVXuV58AMKNKsb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Parallel+and+Distributed+Processing+Symposium&rft.atitle=Using+Load+Balancing+to+Scalably+Parallelize+Sampling-Based+Motion+Planning+Algorithms&rft.au=Fidel%2C+Adam&rft.au=Jacobs%2C+Sam+Ade&rft.au=Sharma%2C+Shishir&rft.au=Amato%2C+Nancy+M.&rft.date=2014-05-01&rft.pub=IEEE&rft.isbn=1479937991&rft.issn=1530-2075&rft.spage=573&rft.epage=582&rft_id=info:doi/10.1109%2FIPDPS.2014.66&rft.externalDocID=6877290 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-2075&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-2075&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-2075&client=summon |

