Audio quality assessment in packet networks: an "inter-subjective" neural network model

Transmitting digital audio signals in real time over packet switched networks (e.g. the Internet) has set forth the need for developing signal processing algorithms that objectively evaluate audio quality. So far, the best way to assess audio quality are subjective listening tests, the most commonly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:15th International Conference on Information Networking (ICOIN-15 2001) S. 579 - 586
Hauptverfasser: Mohamed, S., Cervantes-Perez, F., Afifi, H.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 2001
Schlagworte:
ISBN:0769509517, 9780769509518
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Transmitting digital audio signals in real time over packet switched networks (e.g. the Internet) has set forth the need for developing signal processing algorithms that objectively evaluate audio quality. So far, the best way to assess audio quality are subjective listening tests, the most commonly used being the mean opinion score (MOS) recommended by the International Telecommunication Union (ITU). The goal of this paper is to show how artificial neural networks (ANNs) can be used to mimic the way human subjects estimate the quality of audio signals when distorted by changes in several parameters that affect the transmitted audio quality. To validate the approach, we carried out an MOS experiment for speech signals distorted by different values of IP-network parameters (e.g. loss rate, loss distribution, packetization interval, etc.), and changes in the encoding algorithm used to compress the original signal. Our results allow us to show that ANNs can capture the nonlinear mapping, between certain characteristics of audio signals and a subjective five points quality scale, "built" by a group of human subjects when participating in an MOS experiment, creating, in this way, an "inter-subjective" neural network (INN) model that might effectively "evaluate", in real time, the audio quality in packet switched networks.
AbstractList Transmitting digital audio signals in real time over packet switched networks (e.g. the Internet) has set forth the need for developing signal processing algorithms that objectively evaluate audio quality. So far, the best way to assess audio quality are subjective listening tests, the most commonly used being the mean opinion score (MOS) recommended by the International Telecommunication Union (ITU). The goal of this paper is to show how artificial neural networks (ANNs) can be used to mimic the way human subjects estimate the quality of audio signals when distorted by changes in several parameters that affect the transmitted audio quality. To validate the approach, we carried out an MOS experiment for speech signals distorted by different values of IP-network parameters (e.g. loss rate, loss distribution, packetization interval, etc.), and changes in the encoding algorithm used to compress the original signal. Our results allow us to show that ANNs can capture the nonlinear mapping, between certain characteristics of audio signals and a subjective five points quality scale, "built" by a group of human subjects when participating in an MOS experiment, creating, in this way, an "inter-subjective" neural network (INN) model that might effectively "evaluate", in real time, the audio quality in packet switched networks.
Author Afifi, H.
Cervantes-Perez, F.
Mohamed, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Mohamed
  fullname: Mohamed, S.
  organization: IRISA, Rennes, France
– sequence: 2
  givenname: F.
  surname: Cervantes-Perez
  fullname: Cervantes-Perez, F.
– sequence: 3
  givenname: H.
  surname: Afifi
  fullname: Afifi, H.
BookMark eNo1jz1PwzAYhC0BErT0B8BkdU-xYyeO2aqIj0gVXUCMlT9eS24Tp8QOqP-eSIVbbrhHp7sZugx9AITuKFlRSuRDU2-bt1VOCF1JUhSUX6AZEaUsiCyouEaLGPdkEi94VZY36HM9Wt_jr1G1Pp2wihFi7CAk7AM-KnOAhAOkn344xEesAl76kGDI4qj3YJL_huWUj4Nq_zHc9RbaW3TlVBth8edz9PH89F6_ZpvtS1OvN5mngqeMU6Od5ooblzOipDAlKbkluSgktYJBRab1mnFa5VJapy3V2kquTCUc447N0f251wPA7jj4Tg2n3fk6-wXJi1IC
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICOIN.2001.905514
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 586
ExternalDocumentID 905514
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i174t-41cbfb4a4cf230a97c6064d027591d73e80076b3418299dfbd1bbd94ac87f34f3
IEDL.DBID RIE
ISBN 0769509517
9780769509518
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000166813800077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue Aug 26 18:47:47 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i174t-41cbfb4a4cf230a97c6064d027591d73e80076b3418299dfbd1bbd94ac87f34f3
PageCount 8
ParticipantIDs ieee_primary_905514
PublicationCentury 2000
PublicationDate 20010000
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – year: 2001
  text: 20010000
PublicationDecade 2000
PublicationTitle 15th International Conference on Information Networking (ICOIN-15 2001)
PublicationTitleAbbrev ICOIN
PublicationYear 2001
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000454866
Score 1.3271
Snippet Transmitting digital audio signals in real time over packet switched networks (e.g. the Internet) has set forth the need for developing signal processing...
SourceID ieee
SourceType Publisher
StartPage 579
SubjectTerms Artificial neural networks
Humans
IP networks
Nonlinear distortion
Packet switching
Quality assessment
Signal processing
Signal processing algorithms
Telecommunication switching
Testing
Title Audio quality assessment in packet networks: an "inter-subjective" neural network model
URI https://ieeexplore.ieee.org/document/905514
WOSCitedRecordID wos000166813800077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMcfbnjQizon_iYMr9lamy6JNxkOBzJ3UNxt5CdUpRtbK_jfmzTdVPAi9NCWUEoC_fab997nAVwpmlqV0ghLkxJMhBWYkcRgGgvJtaIqtRXE9YGOx2w65ZOas13VwhhjquQz0_WnVSxfz1Xpt8p6PPL63oAGpf1QqrXZTvEkOdbvB2POU__jQGu-zvqa1UHNOOK90eBxNPbuMO6Gh_5qrlJpy3DvX2-1D-3vGj002ajPAWyZvAW7P_CCh_ByW-psjkLd5CcSGwgnynLkvPKbKVAe0sBXN0jkqOPhEUu8KuVr-A52kOddivf1MFQ1zmnD8_DuaXCP60YKOHOGo8AkVtJKIoiyznEITpWzLUT7iCWPNU0M8wE56QSNOXXSVupYSs2JUIzahNjkCJr5PDfHgBS114QK7VYgIsQqN9wZPmZoJDkhRp1Ay8_QbBFYGbMwOad_3j2DnZDR5Y9zaBbL0lzAtvoostXyslrfL0Yfo-E
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwGMaDTkG9qHPit2F4zdbadEm8yXBsOOsOE3cb-YSqdLK1gv-9SdNNBS9CD20JpSTQp0_e9_29AFxJEhsZkwAJHWOEueGI4kgjEnLBlCQyNiXEdUiShE4mbFRxtstaGK11mXymW-60jOWrmSzcVlmbBU7f18GGa5xVFWutNlQcS452Ot6as9j9OpCKsLO8plVYMwxYe9B9HCTOH4Yt_9hf7VVKdent_uu99kDju0oPjlb6sw_WdFYHOz8Agwfg-bZQ6Qz6yslPyFcYTphm0LrlV53DzCeCL24gz2DT4SPmaFGIF_8lbEJHvORvy2GwbJ3TAE-9u3G3j6pWCii1liNHOJTCCMyxNNZzcEakNS5YuZglCxWJNHUhOWEljVp9UkaoUAjFMJeUmAib6BDUslmmjwCUxFxjwhUhnQBjI-1wa_moJoFgGGt5DOpuhqbvnpYx9ZNz8ufdS7DVHz8Mp8NBcn8Ktn1-lzvOQC2fF_ocbMqPPF3ML8q1_gICz6cq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=15th+International+Conference+on+Information+Networking+%28ICOIN-15+2001%29&rft.atitle=Audio+quality+assessment+in+packet+networks%3A+an+%22inter-subjective%22+neural+network+model&rft.au=Mohamed%2C+S.&rft.au=Cervantes-Perez%2C+F.&rft.au=Afifi%2C+H.&rft.date=2001-01-01&rft.pub=IEEE&rft.isbn=9780769509518&rft.spage=579&rft.epage=586&rft_id=info:doi/10.1109%2FICOIN.2001.905514&rft.externalDocID=905514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769509518/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769509518/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769509518/sc.gif&client=summon&freeimage=true