CURE-NS: a hierarchical clustering algorithm with new shrinking scheme
CURE (clustering using representatives) is an efficient clustering algorithm for large databases, which is more robust to outliers compared with other clustering methods, and identifies clusters having non-spherical shapes and wide variances in size. CURE employs a fixed number or representative poi...
Uložené v:
| Vydané v: | International Conference on Machine Learning and Cybernetics 2002 Ročník 2; s. 895 - 899 vol.2 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
2002
|
| Predmet: | |
| ISBN: | 9780780375086, 0780375084 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | CURE (clustering using representatives) is an efficient clustering algorithm for large databases, which is more robust to outliers compared with other clustering methods, and identifies clusters having non-spherical shapes and wide variances in size. CURE employs a fixed number or representative points to describe the cluster, and the set of representative points are first chosen randomly, and then are shrunk toward the mean of cluster. The shrinking operation plays a key role in CURE, which is used for weakening the effect of outliers. However, we found that the shrinking scheme of CURE is dependent on a hidden assumption of spherical shape of cluster, therefore CURE has difficulties in dealing with databases having specific shapes. In this paper, CURE-NS (CURE with new shrinking scheme) is proposed to overcome this problem, which uses the difference of density values of the representative points to determine the direction and distance of shrinking. Our shrinking scheme has nothing to do with the shape of cluster. A range of experiments demonstrate that CURE-NS has better clustering performance than CURE. |
|---|---|
| AbstractList | CURE (clustering using representatives) is an efficient clustering algorithm for large databases, which is more robust to outliers compared with other clustering methods, and identifies clusters having non-spherical shapes and wide variances in size. CURE employs a fixed number or representative points to describe the cluster, and the set of representative points are first chosen randomly, and then are shrunk toward the mean of cluster. The shrinking operation plays a key role in CURE, which is used for weakening the effect of outliers. However, we found that the shrinking scheme of CURE is dependent on a hidden assumption of spherical shape of cluster, therefore CURE has difficulties in dealing with databases having specific shapes. In this paper, CURE-NS (CURE with new shrinking scheme) is proposed to overcome this problem, which uses the difference of density values of the representative points to determine the direction and distance of shrinking. Our shrinking scheme has nothing to do with the shape of cluster. A range of experiments demonstrate that CURE-NS has better clustering performance than CURE. |
| Author | Qing-Song Shi Qi Wang Yun-Tao Qian |
| Author_xml | – sequence: 1 surname: Yun-Tao Qian fullname: Yun-Tao Qian organization: Sch. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China – sequence: 2 surname: Qing-Song Shi fullname: Qing-Song Shi organization: Sch. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China – sequence: 3 surname: Qi Wang fullname: Qi Wang organization: Sch. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China |
| BookMark | eNotT21LwzAYDKigzv4B_ZI_0JmX5s1vUjYdVAV1n0eaPVmjbSdJZfjvjbjjuOM4OLhLdDruR0DompI5pcTcruqnpp4zQljOqhKUnaDCKE0yuRJEy3NUpPRBMqpKcC4u0LJevy7K57c7bHEXINrouuBsj13_nSaIYdxh2-_2MUzdgA9Z8QgHnLrcfP6VyXUwwBU687ZPUBx9htbLxXv9WDYvD6v6vikDVXwqHfOkNZyqrTROtVwzz43IqIzRlde6FRS41lp6ryVtmRFGSue83wpmgfMZuvnfDQCw-YphsPFnc3zLfwH_PEtl |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICMLC.2002.1174512 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 899 vol.2 |
| ExternalDocumentID | 1174512 |
| GroupedDBID | 6IE 6IK 6IL AAJGR AAVQY AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL |
| ID | FETCH-LOGICAL-i173t-c2f0b9317d69c7b382f39555549984f88b51e38886ff861b295966ccffd52ae33 |
| IEDL.DBID | RIE |
| ISBN | 9780780375086 0780375084 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000181396300196&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Tue Aug 26 18:23:34 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i173t-c2f0b9317d69c7b382f39555549984f88b51e38886ff861b295966ccffd52ae33 |
| ParticipantIDs | ieee_primary_1174512 |
| PublicationCentury | 2000 |
| PublicationDate | 20020000 |
| PublicationDateYYYYMMDD | 2002-01-01 |
| PublicationDate_xml | – year: 2002 text: 20020000 |
| PublicationDecade | 2000 |
| PublicationTitle | International Conference on Machine Learning and Cybernetics 2002 |
| PublicationTitleAbbrev | ICMLC |
| PublicationYear | 2002 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000445335 |
| Score | 1.3414361 |
| Snippet | CURE (clustering using representatives) is an efficient clustering algorithm for large databases, which is more robust to outliers compared with other... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 895 |
| SubjectTerms | Clustering algorithms Clustering methods Computer science Distributed computing Noise shaping Robustness Scattering Shape Spatial databases Working environment noise |
| Title | CURE-NS: a hierarchical clustering algorithm with new shrinking scheme |
| URI | https://ieeexplore.ieee.org/document/1174512 |
| Volume | 2 |
| WOSCitedRecordID | wos000181396300196&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePBUtRW_ycGj2-5ukk3idWlR0FLUQm9lN53YQj9ku_X3O0m3FcGLOSWBhDAh5L1JZh4hd1aaEBCoBwZiJCjGQKAzrMks1yxXEy4z68UmZL-vRiM9qJH7fSwMAPjPZ9B2Vf-WP1mZjXOVdSKEz8JJCh9ImWxjtfb-lJBzRC7CM3PlhF1DxasEO7t2sguaCXXnKX15Tv0PhXY16y95FX-79Br_W9cxaf2E6dHB_gI6ITVYnpLGTqeBVse2SXrp8LUb9N8eaEad9LV_PMC9oWa-cXkScDDN5h-rYlZOF9R5ZimCbbqeFlthBYoMGBbQIsNe9z19DCr9hGAWSVYGJrYhWjySk0QbmTMVW6YFFmQ5ilulchEBQwqcWKuSKI-1QPJjjLUTEWfA2BmpL1dLOCeUR1oKa8EKhAM8Z7lBImSQbCC8MYZnF6TpzDL-3KbIGFcWufy7-4oceVEV78m4JvWy2MANOTRf5Wxd3Pp9_QajK57I |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA5iC-3Jtlr6bg49dnUfySbpdVGU6iKtgjfZzSZV8FHWtb-_k7haCr00pySQECaEfN8kMx9CT5pJVwFQd6TygaBIqRyRQI0lqQhSnhGWaCs2weKYTyZiWEHPh1gYpZT9fKaapmrf8rO13BpXWcsD-EyNpPARJcB7dtFaB4-KSwhgF2q5OTfSri4nZYqdfTvch824otWLBv3I_lFolvP-Elix90un9r-VnaHGT6AeHh6uoHNUUasLVNsrNeDy4NZRJxq_tZ34_QUn2Ihf2-cD2B0sF1uTKQEG42Txsc7nxWyJjW8WA9zGm1m-k1bAwIHVUjXQuNMeRV2nVFBw5h4LCkf62gWbeywLhWRpwH0dCAoFeA4nmvOUeioAEhxqzUMv9QUF-iOl1hn1ExUEl6i6Wq_UFcLEE4xqrTQFQEDSIJVAhSTQDQA4UpLkGtWNWaafuyQZ09IiN393P6KT7mjQn_Z78estOrUSK9avcYeqRb5V9-hYfhXzTf5g9_gbHBqiDw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Machine+Learning+and+Cybernetics+2002&rft.atitle=CURE-NS%3A+a+hierarchical+clustering+algorithm+with+new+shrinking+scheme&rft.au=Yun-Tao+Qian&rft.au=Qing-Song+Shi&rft.au=Qi+Wang&rft.date=2002-01-01&rft.pub=IEEE&rft.isbn=9780780375086&rft.volume=2&rft.spage=895&rft.epage=899+vol.2&rft_id=info:doi/10.1109%2FICMLC.2002.1174512&rft.externalDocID=1174512 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780375086/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780375086/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780375086/sc.gif&client=summon&freeimage=true |

