Outer approximation algorithms for KYP-based LMIs
The performance of an outer approximation approximation algorithm for a class of linear matrix inequalities (LMIs) derived from the Kalman-Yakubovich-Popov lemma is analyzed. It is shown that for a specific class of control motivated problems, the optimal solution is achieved in a finite number of i...
Uloženo v:
| Vydáno v: | Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148) Ročník 4; s. 3025 - 3028 vol.4 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2001
|
| Témata: | |
| ISBN: | 9780780364950, 0780364953 |
| ISSN: | 0743-1619 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The performance of an outer approximation approximation algorithm for a class of linear matrix inequalities (LMIs) derived from the Kalman-Yakubovich-Popov lemma is analyzed. It is shown that for a specific class of control motivated problems, the optimal solution is achieved in a finite number of iterations. Possible modifications for improving performance are discussed. |
|---|---|
| ISBN: | 9780780364950 0780364953 |
| ISSN: | 0743-1619 |
| DOI: | 10.1109/ACC.2001.946378 |

