Polynomial ambiguity resistant precoders (PARP) for MIMO channels: necessity and sufficiency for the blind identifiability and PARP characterization and construction

We consider the following precoded MIMO system blind identifiability problems: let Y(z)=H(z)G(z)X(z); what is the condition on a precoder G(z) such that the input signal X(z) and/or the MIMO channel inverse H/sup -1/(z) can be recovered from the received signal Y(z) and the precoder G(z)? How to con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154) Ročník 2; s. 1563 - 1567 vol.2
Hlavní autoři: Xia, Xiang-gen, Weifeng Su, Hui Liu
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2000
Témata:
ISBN:9780780365148, 0780365143
ISSN:1058-6393
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the following precoded MIMO system blind identifiability problems: let Y(z)=H(z)G(z)X(z); what is the condition on a precoder G(z) such that the input signal X(z) and/or the MIMO channel inverse H/sup -1/(z) can be recovered from the received signal Y(z) and the precoder G(z)? How to construct such precoders? In the above MIMO system, signals are deterministic. We propose (strong) polynomial ambiguity resistant precoders (PARP). For an almost surely given MIMO channel H(z), an input signal X(z) can be blindly identified from Y(z) and G(z) if and only if G(z) is PARP; an input signal X(z) and the MIMO channel inverse H/sup -1/(z) can be blindly identified from Y(z) and G(z) if and only if G(z) is strong PARP. We also provide some properties and constructions on (strong) PARP precoders.
ISBN:9780780365148
0780365143
ISSN:1058-6393
DOI:10.1109/ACSSC.2000.911252