Dynamic multiobjective optimization of war resource allocation using adaptive genetic algorithms
Genetic algorithms (GA) are often well suited for multiobjective optimization problems. The major objective of this research is to optimize the war resource allocations of sorties, for a given war scenario, using genetic algorithms. The war is simulated using THUNDER software. THUNDER software is a...
Gespeichert in:
| Veröffentlicht in: | 2001 IEEE Southeastcon S. 160 - 165 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
2001
|
| Schlagworte: | |
| ISBN: | 0780367480, 9780780367487 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Genetic algorithms (GA) are often well suited for multiobjective optimization problems. The major objective of this research is to optimize the war resource allocations of sorties, for a given war scenario, using genetic algorithms. The war is simulated using THUNDER software. THUNDER software is a stochastic, two-sided, analytical simulation of campaign-level military operations. The simulation is subject to internal unknown noises similar to real war cases. Due to these noises and discreteness in the simulation, as well as in real wars, an adaptive GA approach has been applied to solve this multiobjective optimization problem. Transforming this multiobjective optimization problem to a form suitable for direct implementation of GA was a major accomplishment of this research. A suitable fitness function was chosen after careful research and testing on the GA. Furthermore, the GA parameters were adaptively set to yield smoother and faster fitness convergence. Two fuzzy logic mechanisms were used to adapt the GA parameters. In the first mechanism, the mutation and crossover rates were changed adaptively. In the second mechanism, the fitness function coefficients are changed dynamically in each run. Testing results showed that the adaptive GA outperforms the conventional GA search in this multiobjective optimization problem and was effectively able to allocate forces for war scenarios. |
|---|---|
| AbstractList | Genetic algorithms (GA) are often well suited for multiobjective optimization problems. The major objective of this research is to optimize the war resource allocations of sorties, for a given war scenario, using genetic algorithms. The war is simulated using THUNDER software. THUNDER software is a stochastic, two-sided, analytical simulation of campaign-level military operations. The simulation is subject to internal unknown noises similar to real war cases. Due to these noises and discreteness in the simulation, as well as in real wars, an adaptive GA approach has been applied to solve this multiobjective optimization problem. Transforming this multiobjective optimization problem to a form suitable for direct implementation of GA was a major accomplishment of this research. A suitable fitness function was chosen after careful research and testing on the GA. Furthermore, the GA parameters were adaptively set to yield smoother and faster fitness convergence. Two fuzzy logic mechanisms were used to adapt the GA parameters. In the first mechanism, the mutation and crossover rates were changed adaptively. In the second mechanism, the fitness function coefficients are changed dynamically in each run. Testing results showed that the adaptive GA outperforms the conventional GA search in this multiobjective optimization problem and was effectively able to allocate forces for war scenarios. |
| Author | Palaniappan, S. Sekmen, A. Zein-Sabatto, S. |
| Author_xml | – sequence: 1 givenname: S. surname: Palaniappan fullname: Palaniappan, S. organization: Tennessee State Univ., Nashville, TN, USA – sequence: 2 givenname: S. surname: Zein-Sabatto fullname: Zein-Sabatto, S. – sequence: 3 givenname: A. surname: Sekmen fullname: Sekmen, A. |
| BookMark | eNotkMFOhDAYhJuoie66D6CnvgDY0tLSo8F1Ndm4B_W8_sBf7AbohoJmfXqJOJdJZjLfYRbkvPMdEnLDWcw5M3ev63z3EieM8dgkgjN9RhZMZ0woLTN2SVYhHNgkmUqRmSvy8XDqoHUlbcdmcL44YDm4L6T-OLjW_cCUddRb-g097TH4sS-RQtP4cq7G4LqaQgXHv1mNHQ4TDZra9274bMM1ubDQBFz9-5K8P67f8qdou9s85_fbyHGdDFEqM2HQKCYLKHQmK1VZVVhAk5nSVloqKHXBmRVWy0pipVVqrU0MpAVDhWJJbmeuQ8T9sXct9Kf9_IH4BU4JV6w |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/SECON.2001.923107 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 165 |
| ExternalDocumentID | 923107 |
| GroupedDBID | 6IE 6IH 6IK 6IL AAJGR AAVQY AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i172t-54839e9604bab784d6df6bfae989cfd746ac7b10f3f74d4ed765fff29a5b0e6e3 |
| IEDL.DBID | RIE |
| ISBN | 0780367480 9780780367487 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000169430300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Tue Aug 26 18:58:05 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i172t-54839e9604bab784d6df6bfae989cfd746ac7b10f3f74d4ed765fff29a5b0e6e3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_923107 |
| PublicationCentury | 2000 |
| PublicationDate | 20010000 |
| PublicationDateYYYYMMDD | 2001-01-01 |
| PublicationDate_xml | – year: 2001 text: 20010000 |
| PublicationDecade | 2000 |
| PublicationTitle | 2001 IEEE Southeastcon |
| PublicationTitleAbbrev | SECON |
| PublicationYear | 2001 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000454389 |
| Score | 1.3932394 |
| Snippet | Genetic algorithms (GA) are often well suited for multiobjective optimization problems. The major objective of this research is to optimize the war resource... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 160 |
| SubjectTerms | Analytical models Convergence Fuzzy logic Genetic algorithms Genetic mutations Intelligent systems Military computing Resource management Stochastic resonance Testing |
| Title | Dynamic multiobjective optimization of war resource allocation using adaptive genetic algorithms |
| URI | https://ieeexplore.ieee.org/document/923107 |
| WOSCitedRecordID | wos000169430300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ePDkq-KbPXhNmyabnc1ZLR6kFFTore5raoU2JU3177uPUBG8CDlsQrIss2Fm5_F9Q8itgQyd2sdECsUSpnWWKCikGzlPTCOY1AR2_ScYjcRkUo5bnu2AhbHWhuIz2_PDkMs3ld74UFk_HEZgl-wC8AjV2oZTPJOcs73BMRdOKwMTLaPT9h7apOYgLfvPvk2g9w4HvTjpr-YqwbYMD_61qkPS_cHo0fHW-hyRHbs8IW_3scE8DXWClfqI6oxWTjEsWsQlrZB-yZrWbeCe-tR7DNxRXwU_o9LIVfjM_Vwe4-jemFX1vHlfrLvkdfjwcveYtD0Ukrk7mjSJc0jy0noGFiUVCGa4Qa5Q2lKUGg0wLjWoQYo5AjPMGuAFImalLFRquc1PSWdZLe0Zodpw5nY816lx80gvVltkqKUoJXKdn5NjL5zpKtJkTKNcLv58ekn2YzGXv65Ip6k39prs6c9mvq5vwtZ-AzOXpaM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60CnryVfHtHrymTZPN7uasFsVaClbore5raoU2JU3177uPUBG8CDlsQrIss2Fm5_F9g9CNZglYtQ-R4JJERKkkkiwTdmQ9MQVMx9qz6_dYv89Ho3xQ82x7LIwxxhefmZYb-ly-LtTKhcra_jDCNtFWRkgSB7DWOqDiuOSs9fWuObd6mRFeczqt71md1uzEefvFNQp0_mGnFab91V7FW5fu3r_WtY-aPyg9PFjbnwO0YeZH6O0utJjHvlKwkB9BoeHCqoZZjbnEBeAvUeKyDt1jl3wPoTvs6uAnWGix8J_Z38uhHO0bk6KcVu-zZRO9du-Htw9R3UUhmtrDSRVZlyTNjeNgkUIyTjTVQCUIk_NcgWaECsVkJ4YUGNHEaEYzAEhykcnYUJMeo8a8mJsThJWmxO55qmJt5xFOrCZLQAmeC6AqPUWHTjjjRSDKGAe5nP359BrtPAyfe-PeY__pHO2G0i53XaBGVa7MJdpWn9V0WV75bf4G_zqo6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2001+IEEE+Southeastcon&rft.atitle=Dynamic+multiobjective+optimization+of+war+resource+allocation+using+adaptive+genetic+algorithms&rft.au=Palaniappan%2C+S.&rft.au=Zein-Sabatto%2C+S.&rft.au=Sekmen%2C+A.&rft.date=2001-01-01&rft.pub=IEEE&rft.isbn=9780780367487&rft.spage=160&rft.epage=165&rft_id=info:doi/10.1109%2FSECON.2001.923107&rft.externalDocID=923107 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367487/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367487/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780367487/sc.gif&client=summon&freeimage=true |

