Evaluation of 2D and 3D Deep Learning Approaches For Predicting Visual Acuity Following Surgery for Idiopathic Full-Thickness Macular Holes In Spectral Domain Optical Coherence Tomography Images

In this work, we compared the performance of 2D and 3D versions of four state-of-the-art deep learning neural networks on predicting visual acuity following surgery for idiopathic full-thickness macular holes using an image dataset of spectral-domain optical coherence tomography (OCT) scans. To make...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2023 International Symposium on Image and Signal Processing and Analysis (ISPA) s. 1 - 6
Hlavní autoři: Kucukgoz, Burak, Yapici, M. Mutlu, Steel, David H, Obara, Boguslaw
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 18.09.2023
Témata:
ISSN:1849-2266
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work, we compared the performance of 2D and 3D versions of four state-of-the-art deep learning neural networks on predicting visual acuity following surgery for idiopathic full-thickness macular holes using an image dataset of spectral-domain optical coherence tomography (OCT) scans. To make this study more comparable, using the same dataset revealed the differences between 2D and 3D versions of deep learning neural networks. Based on our results, 3D networks generally outperformed the 2D networks in R-squared and Pearson correlation coefficient; however, they fell behind in mean absolute error. 3D networks also come with the sacrifice of significantly more computational complexity.
AbstractList In this work, we compared the performance of 2D and 3D versions of four state-of-the-art deep learning neural networks on predicting visual acuity following surgery for idiopathic full-thickness macular holes using an image dataset of spectral-domain optical coherence tomography (OCT) scans. To make this study more comparable, using the same dataset revealed the differences between 2D and 3D versions of deep learning neural networks. Based on our results, 3D networks generally outperformed the 2D networks in R-squared and Pearson correlation coefficient; however, they fell behind in mean absolute error. 3D networks also come with the sacrifice of significantly more computational complexity.
Author Kucukgoz, Burak
Yapici, M. Mutlu
Obara, Boguslaw
Steel, David H
Author_xml – sequence: 1
  givenname: Burak
  surname: Kucukgoz
  fullname: Kucukgoz, Burak
  email: b.kucukgoz2@newcastle.ac.uk
  organization: School of Computing, Newcastle University,Newcastle upon Tyne,UK
– sequence: 2
  givenname: M. Mutlu
  surname: Yapici
  fullname: Yapici, M. Mutlu
  email: mutluyapici@ankara.edu.tr
  organization: Elmadag Vocational School, Ankara University,Ankara,TURKEY
– sequence: 3
  givenname: David H
  surname: Steel
  fullname: Steel, David H
  email: david.steel@newcastle.ac.uk
  organization: Biosciences Institute, Newcastle University,Newcastle upon Tyne,UK
– sequence: 4
  givenname: Boguslaw
  surname: Obara
  fullname: Obara, Boguslaw
  email: boguslaw.obara@newcastle.ac.uk
  organization: School of Computing, Newcastle University,Newcastle upon Tyne,UK
BookMark eNo1kNtKAzEQhqMoeOobCM4LbM1hj5eltbpQaaHVW0mzkzaYJkt2V-nr-WRG1KuZ-b-f72KuyJnzDgm5Y3TMGK3u6_VqkpUiY2NOuRgzyosq5fyEjKqiijkVLBO5OCWXrEyrhPM8vyCjrjNbmpYZTWPpknw9fEg7yN54B14Dn4F0DYgZzBBbWKAMzrgdTNo2eKn22MHcB1gFbIzqf8ir6QZpYaIG0x8jtNZ__uTrIewwHEHHet0Y38p-bxTMB2uTTdzeHXYdPEs1WBngyduorh2sW1R9iMKZP0jjYNn2RsVz6vcY0CmEjT_4XZDt_gj1Qe6wuyHnWtoOR3_zmrzMHzbTp2SxfKynk0ViWF7yhGteUoYi54WiVdGkhSiFLnKlVESa0ZTLkmnJmq3AQudNlRa4FXlKS52JRolrcvvrNYj41gZzkOH49v928Q3tw3u9
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISPA58351.2023.10279422
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350315363
EISSN 1849-2266
EndPage 6
ExternalDocumentID 10279422
Genre orig-research
GrantInformation_xml – fundername: Scientific and Technological Research Council of Turkey (TUBITAK)
  funderid: 10.13039/501100004410
GroupedDBID 6IE
6IL
ABLEC
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IEGSK
RIE
RIL
ID FETCH-LOGICAL-i1682-2f2801e3627c097d47383f76ccc2f2f1042a81fa1db3e7f6d947eb36408f53dc3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:24:08 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1682-2f2801e3627c097d47383f76ccc2f2f1042a81fa1db3e7f6d947eb36408f53dc3
OpenAccessLink https://eprints.ncl.ac.uk/293186
PageCount 6
ParticipantIDs ieee_primary_10279422
PublicationCentury 2000
PublicationDate 2023-Sept.-18
PublicationDateYYYYMMDD 2023-09-18
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-18
  day: 18
PublicationDecade 2020
PublicationTitle 2023 International Symposium on Image and Signal Processing and Analysis (ISPA)
PublicationTitleAbbrev ISPA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048504798
ssib042470063
Score 1.8524538
Snippet In this work, we compared the performance of 2D and 3D versions of four state-of-the-art deep learning neural networks on predicting visual acuity following...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms 2D vs. 3D Image Analysis
Correlation coefficient
Deep learning
Machine Learning
Neural networks
Optical coherence tomography
Surgery
Three-dimensional displays
Visual Acuity Measurement
Visualization
Title Evaluation of 2D and 3D Deep Learning Approaches For Predicting Visual Acuity Following Surgery for Idiopathic Full-Thickness Macular Holes In Spectral Domain Optical Coherence Tomography Images
URI https://ieeexplore.ieee.org/document/10279422
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMTABooi3bmAN1I4TJ2NFqegAVKIgNuT4gSLapGop_D9-GXduWsTAwObYknWJnbv77LvvGDtPhBEGJYxkkaWR5KqIitynEVGdx5lGuK1tKDah7u6y5-d80CSrh1wY51wIPnMX1Ax3-bY2czoqwz9c4PYRqHHXlUoXyVrLzSOFVGRvV89ZQuzpWRPTxdv5Zf9h0EEJEoKFIr5YzvarrkowK73tfwq0w1o_CXowWJmeXbbmqj32db1i7obag-iCrizEXeg6N4GGSPUVOg2LuJtBr57iNHRVQ8HP8FTO5noEHTNH1xwHR6P6k_ofFqnTgP4t9G1ZhyrGBgi9RkNsvZG6hFsdQlrhhiiioF8BlbancxTo1mNdVnA_CefmQBkhi1cY1uOGMRv6Y1RssxZ77F0Pr26ipkRDVPIUfXPhBZo4h1ZQmXaurFSIeL1KjTE45BHrCZ1xr7ktYqd8anOpEL6nsp35JLYm3mcbVV25A4qx4sKkXPvYeWmSIuc-b2uLClkajSj2kLVoAV4mCxaOl-W3P_qj_5ht0TJTbAfPTtjG-3TuTtmm-XgvZ9OzsHe-AWo5xe8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9swDBWGtsB2Woem6Nqt42FXt5YsW_YxWBrEWJsFaDb0Fsj6KIwmdpA02__bLxupOCl22GE3WQIE2pJJPol8ZOxzKowwKGEkqzyLJFdVVBU-i4jqPMk1wm1tQ7EJNR7nDw_FpEtWD7kwzrkQfOauqBnu8m1rNnRUhn-4wO0jUOMeplKKeJuutds-UkhFFnf_nKfEn553UV08Lq7L-0kfZUgJGIrkajffX5VVgmEZvv1PkY5Z7yVFDyZ74_OOvXLNCft9s-fuhtaDGIBuLCQDGDi3hI5K9RH6HY-4W8OwXeE0dFlD4c_wo15v9Bz6ZoPOOQ7O5-0v6r_fJk8DerhQ2roNdYwNEH6Npth6IoUJdzoEtcKISKKgbICK29NJCgzaha4b-LYMJ-dAOSHbV5i2i44zG8oFqrZ1j30f3ky_jKKuSENU8wy9c-EFGjmHdlCZuFBWKsS8XmXGGBzyiPaEzrnX3FaJUz6zhVQI4DMZ5z5NrElO2UHTNu6Moqy4MBnXPnFemrQquC9ibVElS6MRx75nPVqA2XLLwzHbffvzf_R_Yq9H07vb2W05_nrB3tCSU6QHzz-wg-fVxn1kR-bnc71eXYZ99Afb2ck2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Symposium+on+Image+and+Signal+Processing+and+Analysis+%28ISPA%29&rft.atitle=Evaluation+of+2D+and+3D+Deep+Learning+Approaches+For+Predicting+Visual+Acuity+Following+Surgery+for+Idiopathic+Full-Thickness+Macular+Holes+In+Spectral+Domain+Optical+Coherence+Tomography+Images&rft.au=Kucukgoz%2C+Burak&rft.au=Yapici%2C+M.+Mutlu&rft.au=Steel%2C+David+H&rft.au=Obara%2C+Boguslaw&rft.date=2023-09-18&rft.pub=IEEE&rft.eissn=1849-2266&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FISPA58351.2023.10279422&rft.externalDocID=10279422