An Optimized POSIT Algorithm Based on Mean Convergence

Proportional Orthogonal Projection Iteration (POSIT) is the mainstream iterative algorithm in camera pose estimation. The traditional POSIT algorithm has many iterations, too long operating time, and low algorithm robustness. In response to these problems, it proposes a POSIT optimization algorithm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 International Conference on Communications, Information System and Computer Engineering (CISCE) s. 636 - 640
Hlavní autori: Ni, Xibing, Zhou, Chunyue, Tian, Hui
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 14.05.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Proportional Orthogonal Projection Iteration (POSIT) is the mainstream iterative algorithm in camera pose estimation. The traditional POSIT algorithm has many iterations, too long operating time, and low algorithm robustness. In response to these problems, it proposes a POSIT optimization algorithm based on mean convergence in this paper. The algorithm is based on the traditional POSIT, which the input of each iteration is not the last output, but is determined by the weighted sum of all the previous outputs. The weights are determined by the differences between the outputs and the mean. In order to reduce the number of iterations of the algorithm and the time complexity, the algorithm pre-stores some of the key-value pairs of input and output in the actual scene into the hash table, and uses Bloom filters to save memory space. In theory, the POSIT algorithm can be used down to O(1). Finally, the algorithm is verified by experiments with other existing algorithms in this paper. The results show that the optimized POSIT has significantly improved accuracy and robustness, and its time complexity is lower than that of the traditional POSIT.
AbstractList Proportional Orthogonal Projection Iteration (POSIT) is the mainstream iterative algorithm in camera pose estimation. The traditional POSIT algorithm has many iterations, too long operating time, and low algorithm robustness. In response to these problems, it proposes a POSIT optimization algorithm based on mean convergence in this paper. The algorithm is based on the traditional POSIT, which the input of each iteration is not the last output, but is determined by the weighted sum of all the previous outputs. The weights are determined by the differences between the outputs and the mean. In order to reduce the number of iterations of the algorithm and the time complexity, the algorithm pre-stores some of the key-value pairs of input and output in the actual scene into the hash table, and uses Bloom filters to save memory space. In theory, the POSIT algorithm can be used down to O(1). Finally, the algorithm is verified by experiments with other existing algorithms in this paper. The results show that the optimized POSIT has significantly improved accuracy and robustness, and its time complexity is lower than that of the traditional POSIT.
Author Ni, Xibing
Tian, Hui
Zhou, Chunyue
Author_xml – sequence: 1
  givenname: Xibing
  surname: Ni
  fullname: Ni, Xibing
  email: 19125041@bjtu.edu.cn
  organization: Beijing Jiaotong University, School of Electronic Engineering,Beijing,China
– sequence: 2
  givenname: Chunyue
  surname: Zhou
  fullname: Zhou, Chunyue
  email: chyzhou@bjtu.edu.cn
  organization: Beijing Jiaotong University, School of Electronic Engineering,Beijing,China
– sequence: 3
  givenname: Hui
  surname: Tian
  fullname: Tian, Hui
  email: huitian@griffith.edu.au
  organization: Griffith University School of Information and Communication Technology,Australia
BookMark eNotj9FKwzAUQCO4B537Ah_MD7TmJmmS-1jL1MKkwrbnkbS3M7CmoxuCfr3C9nTgPBw49-w2jYkYewKRAwh8rup1tSwkWMylkJCj1oVDccMWaB0YU2ihCunumCkTb47nOMRf6vhns643vDzsxymevwb-4k__dkz8g3zi1Zi-adpTaumBzXp_ONHiyjnbvi431Xu2at7qqlxlEYwVmUPVmVYh6WA8AZIQBKEF71sHwWllQ49W6AAtGQEUDDiLwrmiR9lJr-bs8dKNRLQ7TnHw08_ueqP-ACBpQsc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CISCE52179.2021.9445890
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665403528
1665403527
EndPage 640
ExternalDocumentID 9445890
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019JBZ001
  funderid: 10.13039/501100012226
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i1670-893d6c39e4b6ae19e00e1bc1aac81b8437bf9704b1ce601eb618790885f92d2a3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:20 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1670-893d6c39e4b6ae19e00e1bc1aac81b8437bf9704b1ce601eb618790885f92d2a3
OpenAccessLink http://hdl.handle.net/10072/415158
PageCount 5
ParticipantIDs ieee_primary_9445890
PublicationCentury 2000
PublicationDate 2021-May-14
PublicationDateYYYYMMDD 2021-05-14
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May-14
  day: 14
PublicationDecade 2020
PublicationTitle 2021 International Conference on Communications, Information System and Computer Engineering (CISCE)
PublicationTitleAbbrev CISCE
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7650199
Snippet Proportional Orthogonal Projection Iteration (POSIT) is the mainstream iterative algorithm in camera pose estimation. The traditional POSIT algorithm has many...
SourceID ieee
SourceType Publisher
StartPage 636
SubjectTerms Filtering algorithms
Filtering theory
machine pose estimation
mean convergence
Pose estimation
POSIT
Robustness
Software
Software algorithms
Time complexity
Title An Optimized POSIT Algorithm Based on Mean Convergence
URI https://ieeexplore.ieee.org/document/9445890
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDHB48qWzib3LwaLemTfPjOMuGA90Gm7LbSJM3HbhW5ubBv96XrkwEL9JLKCHlpTSfvOZ93yPkRokMORyqAJhyAU9sGCB3TCCEwguBC2Xi-ecHORio6VSPauR2p4UBgDL4DFq-WZ7lu8Ju_K-ytuY8URod9D0pxVarVYVssVC30_447SKNpNefRKxV9f5VNqWkRu_wf887Is0f-R0d7cByTGqQN4jo5HSI3_dy8QWOjobj_oR23l4KdO5fl_QOYeRokdNHMDlNfSh5qaqEJnnqdSfpfVAVPQgWTEicKR07YWMNPBMGmIYwBJZZZozFHabisczmWoY8YxbQmYJM-HrhuFYkcx25yMQnpJ4XOZwSirSXic2ws0m4VUYJx-bIY-1wQBlFZ6ThbZ69b_NazCpzz_--fUEO_LT6k3PGL0l9vdrAFdm3n-vFx-q6fBnftmSJbA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDUEFPKpv42xw82q1p0zQ5zrKx4X7Bpuw20uRNB66VuXnwr_ellongRXoJJaS8lOaT17zve4TcSpEih33pAZPW45HxPeSO9oSQeCFwoUg8_9SLBwM5napRhdxttTAAUASfQd01i7N8m5uN-1XWUJxHUqGDvusqZ5VqrTJoi_mqkXTHSQt5FDsFSsDqZf9fhVMKbrQP__fEI1L7EeDR0RYtx6QCWZWIZkaH-IUvF59g6Wg47k5o8_U5R_f-ZUnvEUeW5hntg85o4oLJC10l1MhjuzVJOl5Z9sBbMBHjXKnQChMq4KnQwBT4PrDUMK0N7jElD-N0rmKfp8wAulOQClcxHFeLaK4CG-jwhOxkeQanhCLv48ik2FlH3EgthWVzJLKyOGAcBGek6myevX1ntpiV5p7_ffuG7Hcm_d6s1x08XJADN8XuHJ3xS7KzXm3giuyZj_XifXVdvJgvE4SMtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+International+Conference+on+Communications%2C+Information+System+and+Computer+Engineering+%28CISCE%29&rft.atitle=An+Optimized+POSIT+Algorithm+Based+on+Mean+Convergence&rft.au=Ni%2C+Xibing&rft.au=Zhou%2C+Chunyue&rft.au=Tian%2C+Hui&rft.date=2021-05-14&rft.pub=IEEE&rft.spage=636&rft.epage=640&rft_id=info:doi/10.1109%2FCISCE52179.2021.9445890&rft.externalDocID=9445890