Analysis of a multigrid preconditioner for Crouzeix-Raviart discretization of elliptic partial differential equation with jump coefficients

SUMMARYIn this paper, we present a multigrid V‐cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix–Raviart discretization of second‐order elliptic problems with jump coefficients. The preconditioner uses standard conforming subspaces as coarse spaces. We s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical linear algebra with applications Ročník 21; číslo 1; s. 24 - 38
Hlavný autor: Zhu, Yunrong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Blackwell Publishing Ltd 01.01.2014
Predmet:
ISSN:1070-5325, 1099-1506
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract SUMMARYIn this paper, we present a multigrid V‐cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix–Raviart discretization of second‐order elliptic problems with jump coefficients. The preconditioner uses standard conforming subspaces as coarse spaces. We showed that the convergence rates of the (multiplicative) two‐grid and multigrid V‐cycle algorithms will deteriorate rapidly because of large jumps in coefficient. However, the preconditioned systems have only a fixed number of small eigenvalues depending on the large jump in coefficient, and the effective condition numbers are independent of the coefficient and bounded logarithmically with respect to the mesh size. As a result, the two‐grid or multigrid preconditioned conjugate gradient algorithm converges nearly uniformly. We also comment on some major differences of the convergence theory between the nonconforming case and the standard conforming case. Numerical experiments support the theoretical results. Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList SUMMARYIn this paper, we present a multigrid V‐cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix–Raviart discretization of second‐order elliptic problems with jump coefficients. The preconditioner uses standard conforming subspaces as coarse spaces. We showed that the convergence rates of the (multiplicative) two‐grid and multigrid V‐cycle algorithms will deteriorate rapidly because of large jumps in coefficient. However, the preconditioned systems have only a fixed number of small eigenvalues depending on the large jump in coefficient, and the effective condition numbers are independent of the coefficient and bounded logarithmically with respect to the mesh size. As a result, the two‐grid or multigrid preconditioned conjugate gradient algorithm converges nearly uniformly. We also comment on some major differences of the convergence theory between the nonconforming case and the standard conforming case. Numerical experiments support the theoretical results. Copyright © 2012 John Wiley & Sons, Ltd.
Author Zhu, Yunrong
Author_xml – sequence: 1
  givenname: Yunrong
  surname: Zhu
  fullname: Zhu, Yunrong
  email: Correspondence to: Yunrong Zhu, Physical Sciences 318 P. O. Box 8085, Idaho State University, Pocatello, ID 83209, USA., zhuyunr@isu.edu
  organization: Department of Mathematics, Idaho State University, Pocatello, ID, USA
BookMark eNpFkEtOwzAURS0EEm1BYgneQIqd4MQeVhUtSFGRUBFDy41teMVNgp3Sz4gpAzbJSkgogtF9T_foDk4fHZdVaRC6oGRICYkvS6eGlLP0CPUoESKijKTH3Z2RiCUxO0X9EJaEkJSJpIc-R6VyuwABVxYrvFq7Bp48aFx7U1SlhgbafY9t5fHYV-u9gW10r95A-QZrCIU3DexVR3ULxjmoGyhw3fagXItYa7wpfx7zuj6QG2ie8XK9qr_eP4rKWAsFtEw4QydWuWDOf3OAHibX8_FNlN9Nb8ejPAKa0jS6UmmsiOVkQejCCioyTZW21pJCcyss57EwnFlt4oxbk6kk5otWhqbMsFjQZICiw-4GnNnJ2sNK-Z2kRHYOZetQdg7lLB91-c9DaMz2j1f-RaZZkjH5OJvKST4nbDJnkiTfNOF9AA
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
DBID BSCLL
DOI 10.1002/nla.1856
DatabaseName Istex
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1099-1506
EndPage 38
ExternalDocumentID NLA1856
ark_67375_WNG_FLT05FT5_0
Genre article
GrantInformation_xml – fundername: NSF
  funderid: DMS‐0715146
– fundername: DTRA Award
  funderid: HDTRA‐ 09‐1‐0036
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
ID FETCH-LOGICAL-i1616-4a62a0f80b01bf9197d1adfff0cd8f9f8829e85fde278fe7a328b099d15e52913
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000328455200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-5325
IngestDate Wed Jan 22 16:29:46 EST 2025
Sun Sep 21 06:19:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1616-4a62a0f80b01bf9197d1adfff0cd8f9f8829e85fde278fe7a328b099d15e52913
Notes ArticleID:NLA1856
istex:5BE89BF6A594BE4AC1C648868E6315B9D4D0418E
NSF - No. DMS-0715146
DTRA Award - No. HDTRA- 09-1-0036
ark:/67375/WNG-FLT05FT5-0
PageCount 15
ParticipantIDs wiley_primary_10_1002_nla_1856_NLA1856
istex_primary_ark_67375_WNG_FLT05FT5_0
PublicationCentury 2000
PublicationDate 2014-01
January 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01
PublicationDecade 2010
PublicationTitle Numerical linear algebra with applications
PublicationTitleAlternate Numer. Linear Algebra Appl
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Brenner SC. A multigrid algorithm for the lowest-order Raviart-Thomas mixed triangular finite element method. SIAM Journal on Numerical Analysis 1992; 29:647-678.
Brenner SC. Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM Journal on Numerical Analysis 2003; 41(1):306-324.
Galvis J, Efendiev Y. Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Modeling & Simulation 2010; 8(4):1461-1483.
Bramble JH. Multigrid Methods, Vol. 294 of Pitman Research Notes in Mathematical Sciences. Longman Scientific & Technical: Essex, England, 1993.
Briggs WL, Henson VE, McCormick SF. A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, 2000.
Xu J. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured meshes. Computing 1996; 56:215-235.
Bramble JH, Pasciak JE, Xu J. The analysis of multigrid algorithms with non-nested spaces or noninherited quadratic forms. Mathematics of Computation 1991; 56:1-34.
Zhu Y. Domain decomposition preconditioners for elliptic equations with jump coefficients. Numerical Linear Algebra with Applications 2008; 15(2-3):271-289.
Hoppe RHW, Wohlmuth B. Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems. SIAM Journal on Numerical Analysis 1997; 34(4):1658-1681.
Brenner SC. An optimal order multigrid for P1 nonconforming finite elements. Mathematics of Computation 1989; 52:1-15.
Axelsson O. Iteration number for the conjugate gradient method. Mathematics and Computers in Simulation 2003; 61(3-6):421-435. MODELLING 2001 (Pilsen).
Toselli A, Widlund O. Domain Decomposition Methods: Algorithms and Theory, Springer Series in Computational Mathematics, Springer-Verlag: Berlin, 2005.
Braess D, Verfürth R. Multigrid methods for nonconforming finite element methods. SIAM Journal on Numerical Analysis 1990; 27:979-986.
Falgout RD, Vassilevski PS, Zikatanov LT. On two-grid convergence estimates. Numerical Linear Algebra with Applications 2005; 12(5-6):471-494.
Oswald P. Preconditioners for nonconforming discretizations. Mathematics of Computation 1996; 65(215):923-941.
Xu J, Zhu Y. Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Mathematical Models and Methods in Applied Science 2008; 18(1):77-105.
Vassilevski PS, Wang J. An application of the abstract multilevel theory to nonconforming finite element methods. SIAM Journal on Numerical Analysis 1995; 32(1):235-248.
Ayuso de Dios B, Zikatanov L. Uniformly convergent iterative methods for discontinuous Galerkin discretizations. Journal of Scientific Computing 2009; 40(1):4-36.
Brenner SC. Two-level additive Schwarz preconditioners for nonconforming finite element methods. Mathematics of Computation 1996; 65:897-921.
Dolejší V, Feistauer M, Felcman J. On the discrete Friedrichs inequality for nonconforming finite elements. Numerical Functional Analysis and Optimization 1999; 20(5-6):437-447.
Chen Z. Equivalence between and multigrid algorithms for nonconforming and mixed methods for second- order elliptic problems. East-West Journal of Numerical Mathematics 1996; 4:1-33.
Golub GH, Van Loan CF. Matrix Computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press: Baltimore, MD, 1996.
Oswald P. Optimality of multilevel preconditioning for nonconforming P1 finite elements. Numerische Mathematik 2008; 111(2):267-291.
Wang F, Chen J, Huang P. A multilevel preconditioner for the C-R FEM for elliptic problems with discontinuous coefficients. Science China Mathematics 2012; 55:1513-1526.
Axelsson O. Iterative Solution Methods. Cambridge University Press: Cambridge, 1994.
Brenner SC. Convergence of nonconforming V-cycle and F-cycle multigrid algorithms for second-order elliptic boundary value problems. Mathematics of Computation 2004; 73(247):1041-1066. (electronic).
Zikatanov L. Two-sided bounds on the convergence rate of two-level methods. Numerical Linear Algebra with Applications 2008; 15(5):439-454.
Oswald P. On hierarchical basis multilevel method with nonconforming P1 elements. Numerische Mathematik 1992; 62:189-212.
Arnold DN, Brezzi F. Mixed and nonconforming finite element methods: implementation, postporcessing and error estimates. RAIRO Modélisation Mathématique Et Analyse Numérique 1985; 19:7-32.
Hackbusch W. Iterative Solution of Large Sparse Systems of Equations, Vol. 95 of Applied Mathematical Sciences. Springer-Verlag: New York, 1994. xxii+429 pp. ISBN: 0-387-94064-2.
2009; 40
1991; 56
2011
2010
2008; 18
1995; 32
2008; 15
1996
1994
1999; 20
2005
1993
2012; 55
1996; 56
1985; 19
1989; 52
2004; 73
1990; 27
2000
1997; 34
1992; 29
1993; 294
1996; 4
2008; 111
2003; 61
2003; 41
1996; 65
1994; 95
2005; 12
1992; 62
1989
2010; 8
References_xml – reference: Hackbusch W. Iterative Solution of Large Sparse Systems of Equations, Vol. 95 of Applied Mathematical Sciences. Springer-Verlag: New York, 1994. xxii+429 pp. ISBN: 0-387-94064-2.
– reference: Brenner SC. A multigrid algorithm for the lowest-order Raviart-Thomas mixed triangular finite element method. SIAM Journal on Numerical Analysis 1992; 29:647-678.
– reference: Braess D, Verfürth R. Multigrid methods for nonconforming finite element methods. SIAM Journal on Numerical Analysis 1990; 27:979-986.
– reference: Oswald P. Preconditioners for nonconforming discretizations. Mathematics of Computation 1996; 65(215):923-941.
– reference: Wang F, Chen J, Huang P. A multilevel preconditioner for the C-R FEM for elliptic problems with discontinuous coefficients. Science China Mathematics 2012; 55:1513-1526.
– reference: Brenner SC. Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM Journal on Numerical Analysis 2003; 41(1):306-324.
– reference: Ayuso de Dios B, Zikatanov L. Uniformly convergent iterative methods for discontinuous Galerkin discretizations. Journal of Scientific Computing 2009; 40(1):4-36.
– reference: Axelsson O. Iteration number for the conjugate gradient method. Mathematics and Computers in Simulation 2003; 61(3-6):421-435. MODELLING 2001 (Pilsen).
– reference: Xu J, Zhu Y. Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Mathematical Models and Methods in Applied Science 2008; 18(1):77-105.
– reference: Bramble JH. Multigrid Methods, Vol. 294 of Pitman Research Notes in Mathematical Sciences. Longman Scientific & Technical: Essex, England, 1993.
– reference: Zhu Y. Domain decomposition preconditioners for elliptic equations with jump coefficients. Numerical Linear Algebra with Applications 2008; 15(2-3):271-289.
– reference: Hoppe RHW, Wohlmuth B. Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems. SIAM Journal on Numerical Analysis 1997; 34(4):1658-1681.
– reference: Brenner SC. Convergence of nonconforming V-cycle and F-cycle multigrid algorithms for second-order elliptic boundary value problems. Mathematics of Computation 2004; 73(247):1041-1066. (electronic).
– reference: Oswald P. Optimality of multilevel preconditioning for nonconforming P1 finite elements. Numerische Mathematik 2008; 111(2):267-291.
– reference: Axelsson O. Iterative Solution Methods. Cambridge University Press: Cambridge, 1994.
– reference: Chen Z. Equivalence between and multigrid algorithms for nonconforming and mixed methods for second- order elliptic problems. East-West Journal of Numerical Mathematics 1996; 4:1-33.
– reference: Bramble JH, Pasciak JE, Xu J. The analysis of multigrid algorithms with non-nested spaces or noninherited quadratic forms. Mathematics of Computation 1991; 56:1-34.
– reference: Vassilevski PS, Wang J. An application of the abstract multilevel theory to nonconforming finite element methods. SIAM Journal on Numerical Analysis 1995; 32(1):235-248.
– reference: Toselli A, Widlund O. Domain Decomposition Methods: Algorithms and Theory, Springer Series in Computational Mathematics, Springer-Verlag: Berlin, 2005.
– reference: Galvis J, Efendiev Y. Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Modeling & Simulation 2010; 8(4):1461-1483.
– reference: Falgout RD, Vassilevski PS, Zikatanov LT. On two-grid convergence estimates. Numerical Linear Algebra with Applications 2005; 12(5-6):471-494.
– reference: Oswald P. On hierarchical basis multilevel method with nonconforming P1 elements. Numerische Mathematik 1992; 62:189-212.
– reference: Xu J. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured meshes. Computing 1996; 56:215-235.
– reference: Brenner SC. An optimal order multigrid for P1 nonconforming finite elements. Mathematics of Computation 1989; 52:1-15.
– reference: Golub GH, Van Loan CF. Matrix Computations, 3rd edn. Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press: Baltimore, MD, 1996.
– reference: Arnold DN, Brezzi F. Mixed and nonconforming finite element methods: implementation, postporcessing and error estimates. RAIRO Modélisation Mathématique Et Analyse Numérique 1985; 19:7-32.
– reference: Dolejší V, Feistauer M, Felcman J. On the discrete Friedrichs inequality for nonconforming finite elements. Numerical Functional Analysis and Optimization 1999; 20(5-6):437-447.
– reference: Zikatanov L. Two-sided bounds on the convergence rate of two-level methods. Numerical Linear Algebra with Applications 2008; 15(5):439-454.
– reference: Brenner SC. Two-level additive Schwarz preconditioners for nonconforming finite element methods. Mathematics of Computation 1996; 65:897-921.
– reference: Briggs WL, Henson VE, McCormick SF. A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, 2000.
– year: 2011
– volume: 56
  start-page: 215
  year: 1996
  end-page: 235
  article-title: The auxiliary space method and optimal multigrid preconditioning techniques for unstructured meshes
  publication-title: Computing
– volume: 40
  start-page: 4
  issue: 1
  year: 2009
  end-page: 36
  article-title: Uniformly convergent iterative methods for discontinuous Galerkin discretizations
  publication-title: Journal of Scientific Computing
– volume: 15
  start-page: 271
  issue: 2–3
  year: 2008
  end-page: 289
  article-title: Domain decomposition preconditioners for elliptic equations with jump coefficients
  publication-title: Numerical Linear Algebra with Applications
– volume: 27
  start-page: 979
  year: 1990
  end-page: 986
  article-title: Multigrid methods for nonconforming finite element methods
  publication-title: SIAM Journal on Numerical Analysis
– volume: 65
  start-page: 923
  issue: 215
  year: 1996
  end-page: 941
  article-title: Preconditioners for nonconforming discretizations
  publication-title: Mathematics of Computation
– year: 2005
– volume: 8
  start-page: 1461
  issue: 4
  year: 2010
  end-page: 1483
  article-title: Domain decomposition preconditioners for multiscale flows in high‐contrast media
  publication-title: Multiscale Modeling & Simulation
– volume: 19
  start-page: 7
  year: 1985
  end-page: 32
  article-title: Mixed and nonconforming finite element methods: implementation, postporcessing and error estimates
  publication-title: RAIRO Modélisation Mathématique Et Analyse Numérique
– volume: 20
  start-page: 437
  issue: 5–6
  year: 1999
  end-page: 447
  article-title: On the discrete Friedrichs inequality for nonconforming finite elements
  publication-title: Numerical Functional Analysis and Optimization
– year: 1989
– volume: 73
  start-page: 1041‐1066
  issue: 247
  year: 2004
  article-title: Convergence of nonconforming V‐cycle and F‐cycle multigrid algorithms for second‐order elliptic boundary value problems
  publication-title: Mathematics of Computation
– year: 2000
– year: 1996
– volume: 32
  start-page: 235
  issue: 1
  year: 1995
  end-page: 248
  article-title: An application of the abstract multilevel theory to nonconforming finite element methods
  publication-title: SIAM Journal on Numerical Analysis
– volume: 18
  start-page: 77
  issue: 1
  year: 2008
  end-page: 105
  article-title: Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients
  publication-title: Mathematical Models and Methods in Applied Science
– volume: 29
  start-page: 647
  year: 1992
  end-page: 678
  article-title: A multigrid algorithm for the lowest‐order Raviart–Thomas mixed triangular finite element method
  publication-title: SIAM Journal on Numerical Analysis
– volume: 4
  start-page: 1
  year: 1996
  end-page: 33
  article-title: Equivalence between and multigrid algorithms for nonconforming and mixed methods for second‐ order elliptic problems
  publication-title: East‐West Journal of Numerical Mathematics
– volume: 12
  start-page: 471
  issue: 5–6
  year: 2005
  end-page: 494
  article-title: On two‐grid convergence estimates
  publication-title: Numerical Linear Algebra with Applications
– year: 1994
– volume: 55
  start-page: 1513
  year: 2012
  end-page: 1526
  article-title: A multilevel preconditioner for the C‐R FEM for elliptic problems with discontinuous coefficients
  publication-title: Science China Mathematics
– year: 2010
– start-page: 93
  year: 1993
  end-page: 109
– volume: 56
  start-page: 1
  year: 1991
  end-page: 34
  article-title: The analysis of multigrid algorithms with non‐nested spaces or noninherited quadratic forms
  publication-title: Mathematics of Computation
– volume: 52
  start-page: 1
  year: 1989
  end-page: 15
  article-title: An optimal order multigrid for P1 nonconforming finite elements
  publication-title: Mathematics of Computation
– volume: 41
  start-page: 306
  issue: 1
  year: 2003
  end-page: 324
  article-title: Poincaré–Friedrichs inequalities for piecewise functions
  publication-title: SIAM Journal on Numerical Analysis
– volume: 95
  year: 1994
– volume: 111
  start-page: 267
  issue: 2
  year: 2008
  end-page: 291
  article-title: Optimality of multilevel preconditioning for nonconforming P1 finite elements
  publication-title: Numerische Mathematik
– volume: 61
  start-page: 421
  issue: 3–6
  year: 2003
  end-page: 435
  article-title: Iteration number for the conjugate gradient method
  publication-title: Mathematics and Computers in Simulation
– volume: 294
  year: 1993
– volume: 34
  start-page: 1658
  issue: 4
  year: 1997
  end-page: 1681
  article-title: Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems
  publication-title: SIAM Journal on Numerical Analysis
– volume: 65
  start-page: 897
  year: 1996
  end-page: 921
  article-title: Two‐level additive Schwarz preconditioners for nonconforming finite element methods
  publication-title: Mathematics of Computation
– volume: 15
  start-page: 439
  issue: 5
  year: 2008
  end-page: 454
  article-title: Two‐sided bounds on the convergence rate of two‐level methods
  publication-title: Numerical Linear Algebra with Applications
– start-page: 119
  year: 1993
  end-page: 124
– volume: 62
  start-page: 189
  year: 1992
  end-page: 212
  article-title: On hierarchical basis multilevel method with nonconforming P1 elements
  publication-title: Numerische Mathematik
SSID ssj0006593
Score 2.026218
Snippet SUMMARYIn this paper, we present a multigrid V‐cycle preconditioner for the linear system arising from piecewise linear nonconforming Crouzeix–Raviart...
SourceID wiley
istex
SourceType Publisher
StartPage 24
SubjectTerms conjugate gradient
Crouzeix-Raviart
effective condition number
jump coefficients
multigrid
preconditioner
two-grid
Title Analysis of a multigrid preconditioner for Crouzeix-Raviart discretization of elliptic partial differential equation with jump coefficients
URI https://api.istex.fr/ark:/67375/WNG-FLT05FT5-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnla.1856
Volume 21
WOSCitedRecordID wos000328455200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006593
  issn: 1070-5325
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMMDAG_GWB8QWSNw4sceqEBhKhVArukVObKMAaktaEGJiZWLgH_JLODsPwYbEFEWykzj32f7udPcZoUMdcE8z6Ts-44njJ4F0Esq5ozTxUi4Z9NP2sImw22WDAb8qsypNLUyhD1EH3MzMsOu1meAimZz8EA19EMew2QSzaI4AbGkDzZ1eR_1OvQ4HheQu-DeuQ5uEVtKzLjmp-gIjNT_z5TcztVtLtPyfj1pBSyWhxK0CAatoRg3X0OJlrcY6WUcflfIIHmkssM0hvM0zicfWHZalXBEG_orb-ejpVWUvX2-f1-I5A2BhU7hrah2Lgk3zDCPiCUtNiscGePD26pgVe6MeC_lwbGK8-A7w8vX2no6UFasweRsbqB-d9doXTnkQg5MBIQwcXwREuJqZoGmiucdD6QmptXZTyTTXwNK5YlRLRUKmVSiahCVAPaVHFSXca26ixhAGsoWwTCm4xKnLU858TQImwEGVPuDCp4KR5jY6shaJx4XYRizye5N7FtL4pnseR52eS6MejV1oaA1RNyz0l4lVyTYmiLudlrnu_LXhLloANuQX8ZU91JjmT2ofzafP02ySH5To-gblK9oF
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLZKO2njwDa2aYyx-YB2y0hcO7G1U9WRgUgjVBWNW-TE9hSY2hKgqjj1utMO_MP-Ep6dpmK3SZyiSHYSx5-fv_fk9z2E9k0oAsMV9SgXuUfzUHk5E8LThgSFUBz6GVdsIkpTfn4uTlvoW5MLU-tDrANudmU4e20XuA1IHzxSDf0tv8JuE26gDgUUAbw734fxWbI2xGGtuQsOju-xLmGN9qxPDpq-QEnt35z_S03d3hK_fNJXvUJbK0qJezUGXqOWHm-jzcFaj_X6DfrbaI_gicESu1OEv6pS4alziNVKsAgDg8X9anJ7p8v5cnE_lLMSoIVt6q7NdqxTNu0zrIwnGJsCTy304O1NoRV3o69qAXFso7z4AhCzXPwpJtrJVdiTG2_RWXw46h95q1IMXgmUMPSoDIn0Dbdh09yIQEQqkMoY4xeKG2GApwvNmVGaRNzoSHYJz4F8qoBpRkTQfYfaYxjIe4RVwcApLnxRCE4NCbkEF1VRQAZlkpPuDvripiSb1nIbmawu7emziGU_0x9ZnIx8Fo9Y5kNDNxPrhrUCM3E62XYKsjTp2euH_234GT0_Gg2SLDlOT3bRC-BGtI62fETtm-pW76FnxeymvK4-raD2AOb93fU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHdEGIHkp5CVoePiBuKYnXTmz1hIAAYhshtAhukRPbKIDYJTyEeuLaUw_9hnySjp3NqtyQeooi2Xl57Pxn5PkNwKaNZWSFZgETsghYEeug4FIGxtKolFpgP-uLTSRZJi4u5MkEfG9zYRo-xDjg5maGX6_dBDdDbbf_oYbeqG_4t4k_wCRzNWQ6MLl3mp71xgtx3DB30cEJA96lvGXPhnS77YuS1H3N57fS1P9b0tn_eqrP8GkkKclOYwNzMGFu5-HjjzGP9X4BfrfsETKwRBG_i_CyrjQZeodYj4BFBBUs2a0Hjz9N9fz68udUPVVoWsSl7rpsxyZl013DYTxxsSnJ0Jke3r0ttOJPzF0DECcuykuu0GJeX36VA-NxFW7nxiKcpfv93cNgVIohqFASxgFTMVWhFS5sWlgZyURHSltrw1ILKy3qdGkEt9rQRFiTqC4VBYpPHXHDqYy6S9C5xRdZBqJLjk5xGcpSCmZpLBS6qJqhZTCuBO2uwJYfknzY4DZyVV-73WcJz8-zgzzt9UOe9nkeYkM_EuOGDYGZek62G4I86-2445f3NtyA6ZO9NO8dZcdfYQalEWuCLavQeagfzRpMlU8P1X29PrK0v6aT3XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+a+multigrid+preconditioner+for+Crouzeix-Raviart+discretization+of+elliptic+partial+differential+equation+with+jump%E2%80%89coefficients&rft.jtitle=Numerical+linear+algebra+with+applications&rft.au=Zhu%2C+Yunrong&rft.date=2014-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1070-5325&rft.eissn=1099-1506&rft.volume=21&rft.issue=1&rft.spage=24&rft.epage=38&rft_id=info:doi/10.1002%2Fnla.1856&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_FLT05FT5_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5325&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5325&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5325&client=summon