A 5k kernel for P2-packing in net-free graphs
Given a graph G = (V, E), a P 2 -packing P is a collection of vertex disjoint copies of P 2 s in G where a P 2 is a simple path with three vertices and two edges. The kP 2 -Packing problem asks whether there exists a P 2 -packing of size k in G by taking graph G and a fixed parameter k as the input....
Uloženo v:
| Vydáno v: | ICSEC : 2014 International Computer Science and Engineering Conference : July 30, 2014-August 1, 2014 s. 12 - 17 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.07.2014
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Given a graph G = (V, E), a P 2 -packing P is a collection of vertex disjoint copies of P 2 s in G where a P 2 is a simple path with three vertices and two edges. The kP 2 -Packing problem asks whether there exists a P 2 -packing of size k in G by taking graph G and a fixed parameter k as the input. This problem is NP-hard for net-free graphs. In this paper, we give a kernelization algorithm for the kP 2 -Packing problem in net-free graphs. We show that in polynomial time our kernelization algorithm obtains a size-5k kernel which is smaller than those kernels found by previous known kernelization algorithms. |
|---|---|
| DOI: | 10.1109/ICSEC.2014.6978121 |