Interactive visual clustering of large collections of trajectories

One of the most common operations in exploration and analysis of various kinds of data is clustering, i.e. discovery and interpretation of groups of objects having similar properties and/or behaviors. In clustering, objects are often treated as points in multi-dimensional space of properties. Howeve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2009 IEEE Symposium on Visual Analytics Science and Technology s. 3 - 10
Hlavní autoři: Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D., Giannotti, F.
Médium: Konferenční příspěvek
Jazyk:angličtina
japonština
Vydáno: IEEE 01.10.2009
Témata:
ISBN:9781424452835, 142445283X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract One of the most common operations in exploration and analysis of various kinds of data is clustering, i.e. discovery and interpretation of groups of objects having similar properties and/or behaviors. In clustering, objects are often treated as points in multi-dimensional space of properties. However, structurally complex objects, such as trajectories of moving entities and other kinds of spatio-temporal data, cannot be adequately represented in this manner. Such data require sophisticated and computationally intensive clustering algorithms, which are very hard to scale effectively to large datasets not fitting in the computer main memory. We propose an approach to extracting meaningful clusters from large databases by combining clustering and classification, which are driven by a human analyst through an interactive visual interface.
AbstractList One of the most common operations in exploration and analysis of various kinds of data is clustering, i.e. discovery and interpretation of groups of objects having similar properties and/or behaviors. In clustering, objects are often treated as points in multi-dimensional space of properties. However, structurally complex objects, such as trajectories of moving entities and other kinds of spatio-temporal data, cannot be adequately represented in this manner. Such data require sophisticated and computationally intensive clustering algorithms, which are very hard to scale effectively to large datasets not fitting in the computer main memory. We propose an approach to extracting meaningful clusters from large databases by combining clustering and classification, which are driven by a human analyst through an interactive visual interface.
Author Giannotti, F.
Rinzivillo, S.
Nanni, M.
Andrienko, G.
Pedreschi, D.
Andrienko, N.
Author_xml – sequence: 1
  givenname: G.
  surname: Andrienko
  fullname: Andrienko, G.
  organization: Fraunhofer Inst. IAIS (Intell. Anal. & Inf. Syst.), St. Augustin, Germany
– sequence: 2
  givenname: N.
  surname: Andrienko
  fullname: Andrienko, N.
  organization: Fraunhofer Inst. IAIS (Intell. Anal. & Inf. Syst.), St. Augustin, Germany
– sequence: 3
  givenname: S.
  surname: Rinzivillo
  fullname: Rinzivillo, S.
  organization: KDD Lab., CNR, Pisa, Italy
– sequence: 4
  givenname: M.
  surname: Nanni
  fullname: Nanni, M.
  organization: KDD Lab., CNR, Pisa, Italy
– sequence: 5
  givenname: D.
  surname: Pedreschi
  fullname: Pedreschi, D.
  organization: Univ. of Pisa, Pisa, Italy
– sequence: 6
  givenname: F.
  surname: Giannotti
  fullname: Giannotti, F.
  organization: KDD Lab., CNR, Pisa, Italy
BookMark eNotT8lqwzAUFLSBNqk_oPTiH7Cr3dIxDV0CgR6S9Bpk-72goNpFcgL9-9o0cxlmYWDm5LbrOyDkkdGSMWqfv5bbXckptaUSgisjb0hmK8Mkl1JxI9SMzKfYClUZdUeylE50xBQqc09e1t0A0TWDv0B-8ensQt6EcxpN3x3zHvPg4hHypg8BxlbfpckcojuNso8e0gOZoQsJsisvyP7tdbf6KDaf7-vVclN4pvRQWJSoqKkroVGjMTUa1VYOUVrbAlphWi2xrjVypzhrK601AOMNb1COD8SCPP3vegA4_ET_7eLv4Xpb_AErAE5T
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VAST.2009.5332584
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 10
ExternalDocumentID 5332584
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i156t-9f4f508b736f6f88bf85d7aff499def938d64fbb6f2a521d7666ee12c2cf40093
IEDL.DBID RIE
ISBN 9781424452835
142445283X
IngestDate Wed Aug 27 02:33:02 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009935785
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-9f4f508b736f6f88bf85d7aff499def938d64fbb6f2a521d7666ee12c2cf40093
PageCount 8
ParticipantIDs ieee_primary_5332584
PublicationCentury 2000
PublicationDate 2009-10
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10
PublicationDecade 2000
PublicationTitle 2009 IEEE Symposium on Visual Analytics Science and Technology
PublicationTitleAbbrev VAST
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452858
Score 1.8062272
Snippet One of the most common operations in exploration and analysis of various kinds of data is clustering, i.e. discovery and interpretation of groups of objects...
SourceID ieee
SourceType Publisher
StartPage 3
SubjectTerms classification
clustering
Clustering algorithms
Clustering methods
Data visualization
Functional analysis
geovisualization
Humans
Information analysis
Information systems
Joining processes
movement data
Scalability
scalable visualization
Spatio-temporal data
Spatiotemporal phenomena
trajectories
Title Interactive visual clustering of large collections of trajectories
URI https://ieeexplore.ieee.org/document/5332584
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLY2xIHTgA3xVg4cKesjbdIjICYOaJrEmHabmsSWhqYObe1-P0nWDSFx4ZZGalTFaWx_tj8D3KkijTEkGchEq4BnWASS7EgYQ2TPg1Q-233yJoZDOZ3moxbc72thENEnn-GDG_pYvlnq2kFlfWuaxFZhtqEtRLat1drjKY4aXKZyV7vlOEumO0qn5jltoppRmPcnj-_jLVtls-iv7ipeuQw6__usY-j9VOmx0V7_nEALy1Po7No0sOav7cKTR_0Kf7GxzXxdFwumF7VjSLDvsSWxhUsHZ-5I-MSscu0mq1Xx6SF960v34GPwMn5-DZrWCcHcOmRVkBMna3opkWSUkZSKZGpEQWQdHINkZWAyTkplFFthRUZYLwYxinWsiTuU4wwOymWJ58AII2F4VugENc81qjDJUedcOkuCh_ICum5LZl9bdoxZsxuXf09fwZGPx_h0uGs4qFY13sCh3lTz9erWi_QbqWqgTA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFPRp6iZ-mwcfretH2qaPKo6JcwycY2-jTe5gMjrZ2v39Jlk3EXzxLQ00lFyau_vd3e8AbrM09NEl4YhAZg6PMHUE6VGsFJE-DyKz2e6jXtzvi_E4GdTgblsLg4g2-QzvzdDG8tVclgYqa2vTxNcKcwd2TeesZF2ttUVUDDm4CMWmesuwlow3pE7Vc1jFNT03aY8e3odrvspq2V_9Vax66TT-92GH0Pqp02ODrQY6ghrmx9DYNGpg1X_bhEeL-6X2amOr6bJMZ0zOSsORoN9jc2IzkxDOzKGwqVn50kwWi_TTgvram27BR-d5-NR1quYJzlS7ZIWTECdtfGVxEFFEQmQkQhWnRNrFUUhaCirilGUR-Vpcnoq1H4Po-dKXxA3OcQL1fJ7jKTBCL1Y8SmWAkicSMzdIUCZcGFuCu-IMmmZLJl9rfoxJtRvnf0_fwH53-Nab9F76rxdwYKMzNjnuEurFosQr2JOrYrpcXFvxfgNCO6Ob
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Symposium+on+Visual+Analytics+Science+and+Technology&rft.atitle=Interactive+visual+clustering+of+large+collections+of+trajectories&rft.au=Andrienko%2C+G.&rft.au=Andrienko%2C+N.&rft.au=Rinzivillo%2C+S.&rft.au=Nanni%2C+M.&rft.date=2009-10-01&rft.pub=IEEE&rft.isbn=9781424452835&rft.spage=3&rft.epage=10&rft_id=info:doi/10.1109%2FVAST.2009.5332584&rft.externalDocID=5332584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452835/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452835/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424452835/sc.gif&client=summon&freeimage=true