A comparative study of constrained multi-objective evolutionary algorithms on constrained multi-objective optimization problems

Solving constrained multi-objective optimization problems is a difficult task, it needs to simultaneously optimize multiple conflicting objectives and a number of constraints. This paper first reviews a number of popular constrained multi-objective evolutionary algorithms (CMOEAs) and twenty-three w...

Full description

Saved in:
Bibliographic Details
Published in:2017 IEEE Congress on Evolutionary Computation (CEC) pp. 209 - 216
Main Authors: Zhun Fan, Yi Fang, Wenji Li, Jiewei Lu, Xinye Cai, Caimin Wei
Format: Conference Proceeding
Language:English
Japanese
Published: IEEE 01.06.2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Solving constrained multi-objective optimization problems is a difficult task, it needs to simultaneously optimize multiple conflicting objectives and a number of constraints. This paper first reviews a number of popular constrained multi-objective evolutionary algorithms (CMOEAs) and twenty-three widely used constrained multi-objective optimization problems (CMOPs) (including CF1-10, CTP1-8, BNH, CONSTR, OSY, SRN and TNK problems). Then eight popular CMOEAs with simulated binary crossover (SBX) and differential evolution (DE) operators are selected to test their performance on the twenty-three CMOPs. The eight CMOEAs can be classified into domination-based CMOEAs (including ATM, IDEA, NSGA-II-CDP and SP) and decomposition-based CMOEAs (including CMOEA/D, MOEA/D-CDP, MOEA/D-SR and MOEA/D-IEpsilon). The comprehensive experimental results indicate that IDEA has the best performance in the domination-based CMOEAs and MOEA/D-IEpsilon has the best performance in the decomposition-based CMOEAs. Among the eight CMOEAs, MOEA/D-IEpsilon with both SBX and DE operators has the best performance on the twenty-three test problems.
AbstractList Solving constrained multi-objective optimization problems is a difficult task, it needs to simultaneously optimize multiple conflicting objectives and a number of constraints. This paper first reviews a number of popular constrained multi-objective evolutionary algorithms (CMOEAs) and twenty-three widely used constrained multi-objective optimization problems (CMOPs) (including CF1-10, CTP1-8, BNH, CONSTR, OSY, SRN and TNK problems). Then eight popular CMOEAs with simulated binary crossover (SBX) and differential evolution (DE) operators are selected to test their performance on the twenty-three CMOPs. The eight CMOEAs can be classified into domination-based CMOEAs (including ATM, IDEA, NSGA-II-CDP and SP) and decomposition-based CMOEAs (including CMOEA/D, MOEA/D-CDP, MOEA/D-SR and MOEA/D-IEpsilon). The comprehensive experimental results indicate that IDEA has the best performance in the domination-based CMOEAs and MOEA/D-IEpsilon has the best performance in the decomposition-based CMOEAs. Among the eight CMOEAs, MOEA/D-IEpsilon with both SBX and DE operators has the best performance on the twenty-three test problems.
Author Wenji Li
Zhun Fan
Xinye Cai
Jiewei Lu
Caimin Wei
Yi Fang
Author_xml – sequence: 1
  surname: Zhun Fan
  fullname: Zhun Fan
  organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China
– sequence: 2
  surname: Yi Fang
  fullname: Yi Fang
  organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China
– sequence: 3
  surname: Wenji Li
  fullname: Wenji Li
  organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China
– sequence: 4
  surname: Jiewei Lu
  fullname: Jiewei Lu
  organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China
– sequence: 5
  surname: Xinye Cai
  fullname: Xinye Cai
  organization: Coll. of Comput. Sci. & Technol., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China
– sequence: 6
  surname: Caimin Wei
  fullname: Caimin Wei
  organization: Dept. of Math., Shantou Univ., Shantou, China
BookMark eNp9kD1PwzAYhI0EAy3sSCz-Awl-7dpJxioqH1IlFpgrf7wBoziOHKdSWfjrFOjMdNLpntPpFuR8iAMScgOsBGDNXbtpS86gKqtGNQLkGVmAZA1bKQZwSb7W1MYw6qSz3yOd8uwONHZHc5hy0n5AR8PcZ19E84H2N4T72M_Zx0GnA9X9W0w-v4eJxuFfLI7ZB_-pf0g6pmh6DNMVueh0P-H1SZfk9X7z0j4W2-eHp3a9LTxIlQvFwdS14nIlDSrHa7RSWm6sqw03KMBUzDAGHQjXyJp3FcOVc9zWWmgJUizJ7V-vR8TdmHw4jt-dPhHf_rRfUQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2017.7969315
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509046011
9781509046010
EndPage 216
ExternalDocumentID 7969315
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i156t-621b8862545be6d28ec55c2bcd8b2be31b70b001f13d9582f70e4dd2c8a3a5153
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:04 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-621b8862545be6d28ec55c2bcd8b2be31b70b001f13d9582f70e4dd2c8a3a5153
PageCount 8
ParticipantIDs ieee_primary_7969315
PublicationCentury 2000
PublicationDate 2017-06
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06
PublicationDecade 2010
PublicationTitle 2017 IEEE Congress on Evolutionary Computation (CEC)
PublicationTitleAbbrev CEC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7365942
Snippet Solving constrained multi-objective optimization problems is a difficult task, it needs to simultaneously optimize multiple conflicting objectives and a number...
SourceID ieee
SourceType Publisher
StartPage 209
SubjectTerms Algorithm design and analysis
Evolutionary computation
Pareto optimization
Sociology
Sorting
Title A comparative study of constrained multi-objective evolutionary algorithms on constrained multi-objective optimization problems
URI https://ieeexplore.ieee.org/document/7969315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zePCksonf5ODRbk3SNMlRxsTT2EFht9EkrzpxrXTdwJP_uklaNwQRvIWQR-Al5H3k93sPoRtlYml5gJVbn61KIJLOEEaaCwEkE5yCDM0mxGQiZzM17aDbLRcGAAL4DAZ-GP7ybWnWPlU2FCpVzDPK94QQDVfr--cxVsPReOShWmLQLvvRLyWYi_vD_210hPo73h2ebi3KMepA0UOfd9jsSnTjUA8Wl7mb9MVfXWAPFgdYYFTq1-b5wrBpb1RWfeDs7bmsFvXLcoXL4k-x0r0fy5aYidtWM6s-erofP44eorZtQrRwwVgdpZRo6QIV5xtpSC2VYDg3VBsrNdXAiBax95VywqzikuYihsRaamTGMufesBPULcoCThE2hOROPldEZQlPiMopE4q7EISzVFFzhnpeefP3pjLGvNXb-e_TF-jAn08DtLpE3bpawxXaN5t6saquw3F-AXZupqg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jCnpS2cRvc_BotyZtluQoY2PiHDtM2G20yatOXCtdN_Dkv26S1g1BBG8h5BF4CXkf-f3eQ-hGKl9o5mDl2marQvCEMYRezDgHEnFGQbhmE3w0EtOpHNfQ7YYLAwAOfAYtO3R_-TpTK5sqa3PZkYFllO-wMKSkZGt9_z36st3tdS1Yi7eqhT86pjiD0T_431aHqLll3uHxxqYcoRqkDfR5h9W2SDd2FWFxlphJW_7VhPagsQMGeln8Wj5gGNbVnYryDxy9PWf5vHhZLHGW_imWmRdkUVEzcdVsZtlET_3epDvwqsYJ3tyEY4XXoSQWJlQx3lEMHU0FKMYUjZUWMY0hIDH3rbeUkEBLJmjCfQi1pkpEQWQcnOAY1dMshROEFSGJkU8kkVHIQiITGnDJTBDCgo6k6hQ1rPJm72VtjFmlt7Pfp6_R3mDyOJwN70cP52jfnlUJu7pA9SJfwSXaVetivsyv3NF-AUfmqe8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=A+comparative+study+of+constrained+multi-objective+evolutionary+algorithms+on+constrained+multi-objective+optimization+problems&rft.au=Zhun+Fan&rft.au=Yi+Fang&rft.au=Wenji+Li&rft.au=Jiewei+Lu&rft.date=2017-06-01&rft.pub=IEEE&rft.spage=209&rft.epage=216&rft_id=info:doi/10.1109%2FCEC.2017.7969315&rft.externalDocID=7969315