A comparative study of constrained multi-objective evolutionary algorithms on constrained multi-objective optimization problems
Solving constrained multi-objective optimization problems is a difficult task, it needs to simultaneously optimize multiple conflicting objectives and a number of constraints. This paper first reviews a number of popular constrained multi-objective evolutionary algorithms (CMOEAs) and twenty-three w...
Saved in:
| Published in: | 2017 IEEE Congress on Evolutionary Computation (CEC) pp. 209 - 216 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English Japanese |
| Published: |
IEEE
01.06.2017
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Solving constrained multi-objective optimization problems is a difficult task, it needs to simultaneously optimize multiple conflicting objectives and a number of constraints. This paper first reviews a number of popular constrained multi-objective evolutionary algorithms (CMOEAs) and twenty-three widely used constrained multi-objective optimization problems (CMOPs) (including CF1-10, CTP1-8, BNH, CONSTR, OSY, SRN and TNK problems). Then eight popular CMOEAs with simulated binary crossover (SBX) and differential evolution (DE) operators are selected to test their performance on the twenty-three CMOPs. The eight CMOEAs can be classified into domination-based CMOEAs (including ATM, IDEA, NSGA-II-CDP and SP) and decomposition-based CMOEAs (including CMOEA/D, MOEA/D-CDP, MOEA/D-SR and MOEA/D-IEpsilon). The comprehensive experimental results indicate that IDEA has the best performance in the domination-based CMOEAs and MOEA/D-IEpsilon has the best performance in the decomposition-based CMOEAs. Among the eight CMOEAs, MOEA/D-IEpsilon with both SBX and DE operators has the best performance on the twenty-three test problems. |
|---|---|
| AbstractList | Solving constrained multi-objective optimization problems is a difficult task, it needs to simultaneously optimize multiple conflicting objectives and a number of constraints. This paper first reviews a number of popular constrained multi-objective evolutionary algorithms (CMOEAs) and twenty-three widely used constrained multi-objective optimization problems (CMOPs) (including CF1-10, CTP1-8, BNH, CONSTR, OSY, SRN and TNK problems). Then eight popular CMOEAs with simulated binary crossover (SBX) and differential evolution (DE) operators are selected to test their performance on the twenty-three CMOPs. The eight CMOEAs can be classified into domination-based CMOEAs (including ATM, IDEA, NSGA-II-CDP and SP) and decomposition-based CMOEAs (including CMOEA/D, MOEA/D-CDP, MOEA/D-SR and MOEA/D-IEpsilon). The comprehensive experimental results indicate that IDEA has the best performance in the domination-based CMOEAs and MOEA/D-IEpsilon has the best performance in the decomposition-based CMOEAs. Among the eight CMOEAs, MOEA/D-IEpsilon with both SBX and DE operators has the best performance on the twenty-three test problems. |
| Author | Wenji Li Zhun Fan Xinye Cai Jiewei Lu Caimin Wei Yi Fang |
| Author_xml | – sequence: 1 surname: Zhun Fan fullname: Zhun Fan organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China – sequence: 2 surname: Yi Fang fullname: Yi Fang organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China – sequence: 3 surname: Wenji Li fullname: Wenji Li organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China – sequence: 4 surname: Jiewei Lu fullname: Jiewei Lu organization: Dept. of Electron. Eng., Shantou Univ., Shantou, China – sequence: 5 surname: Xinye Cai fullname: Xinye Cai organization: Coll. of Comput. Sci. & Technol., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China – sequence: 6 surname: Caimin Wei fullname: Caimin Wei organization: Dept. of Math., Shantou Univ., Shantou, China |
| BookMark | eNp9kD1PwzAYhI0EAy3sSCz-Awl-7dpJxioqH1IlFpgrf7wBoziOHKdSWfjrFOjMdNLpntPpFuR8iAMScgOsBGDNXbtpS86gKqtGNQLkGVmAZA1bKQZwSb7W1MYw6qSz3yOd8uwONHZHc5hy0n5AR8PcZ19E84H2N4T72M_Zx0GnA9X9W0w-v4eJxuFfLI7ZB_-pf0g6pmh6DNMVueh0P-H1SZfk9X7z0j4W2-eHp3a9LTxIlQvFwdS14nIlDSrHa7RSWm6sqw03KMBUzDAGHQjXyJp3FcOVc9zWWmgJUizJ7V-vR8TdmHw4jt-dPhHf_rRfUQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CEC.2017.7969315 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1509046011 9781509046010 |
| EndPage | 216 |
| ExternalDocumentID | 7969315 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i156t-621b8862545be6d28ec55c2bcd8b2be31b70b001f13d9582f70e4dd2c8a3a5153 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:04 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i156t-621b8862545be6d28ec55c2bcd8b2be31b70b001f13d9582f70e4dd2c8a3a5153 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_7969315 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06 |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 IEEE Congress on Evolutionary Computation (CEC) |
| PublicationTitleAbbrev | CEC |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7365942 |
| Snippet | Solving constrained multi-objective optimization problems is a difficult task, it needs to simultaneously optimize multiple conflicting objectives and a number... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 209 |
| SubjectTerms | Algorithm design and analysis Evolutionary computation Pareto optimization Sociology Sorting |
| Title | A comparative study of constrained multi-objective evolutionary algorithms on constrained multi-objective optimization problems |
| URI | https://ieeexplore.ieee.org/document/7969315 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zePCksonf5ODRbk3SNMlRxsTT2EFht9EkrzpxrXTdwJP_uklaNwQRvIWQR-Al5H3k93sPoRtlYml5gJVbn61KIJLOEEaaCwEkE5yCDM0mxGQiZzM17aDbLRcGAAL4DAZ-GP7ybWnWPlU2FCpVzDPK94QQDVfr--cxVsPReOShWmLQLvvRLyWYi_vD_210hPo73h2ebi3KMepA0UOfd9jsSnTjUA8Wl7mb9MVfXWAPFgdYYFTq1-b5wrBpb1RWfeDs7bmsFvXLcoXL4k-x0r0fy5aYidtWM6s-erofP44eorZtQrRwwVgdpZRo6QIV5xtpSC2VYDg3VBsrNdXAiBax95VywqzikuYihsRaamTGMufesBPULcoCThE2hOROPldEZQlPiMopE4q7EISzVFFzhnpeefP3pjLGvNXb-e_TF-jAn08DtLpE3bpawxXaN5t6saquw3F-AXZupqg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jCnpS2cRvc_BotyZtluQoY2PiHDtM2G20yatOXCtdN_Dkv26S1g1BBG8h5BF4CXkf-f3eQ-hGKl9o5mDl2marQvCEMYRezDgHEnFGQbhmE3w0EtOpHNfQ7YYLAwAOfAYtO3R_-TpTK5sqa3PZkYFllO-wMKSkZGt9_z36st3tdS1Yi7eqhT86pjiD0T_431aHqLll3uHxxqYcoRqkDfR5h9W2SDd2FWFxlphJW_7VhPagsQMGeln8Wj5gGNbVnYryDxy9PWf5vHhZLHGW_imWmRdkUVEzcdVsZtlET_3epDvwqsYJ3tyEY4XXoSQWJlQx3lEMHU0FKMYUjZUWMY0hIDH3rbeUkEBLJmjCfQi1pkpEQWQcnOAY1dMshROEFSGJkU8kkVHIQiITGnDJTBDCgo6k6hQ1rPJm72VtjFmlt7Pfp6_R3mDyOJwN70cP52jfnlUJu7pA9SJfwSXaVetivsyv3NF-AUfmqe8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=A+comparative+study+of+constrained+multi-objective+evolutionary+algorithms+on+constrained+multi-objective+optimization+problems&rft.au=Zhun+Fan&rft.au=Yi+Fang&rft.au=Wenji+Li&rft.au=Jiewei+Lu&rft.date=2017-06-01&rft.pub=IEEE&rft.spage=209&rft.epage=216&rft_id=info:doi/10.1109%2FCEC.2017.7969315&rft.externalDocID=7969315 |