Automatic Clustering of Performance Events
Modern hardware and software are becoming increasingly complex due to advancements in digital and smart solutions. This is why industrial systems seek efficient use of resources to confront the challenges caused by the complex resource utilization demand. The demand and utilization of different reso...
Uloženo v:
| Vydáno v: | Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) s. 1 - 8 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
12.09.2023
|
| Témata: | |
| ISSN: | 1946-0759 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Modern hardware and software are becoming increasingly complex due to advancements in digital and smart solutions. This is why industrial systems seek efficient use of resources to confront the challenges caused by the complex resource utilization demand. The demand and utilization of different resources show the particular execution behavior of the applications. One way to get this information is by monitoring performance events and understanding the relationship among them. However, manual analysis of this huge data is tedious and requires experts' knowledge. This paper focuses on automatically identifying the relationship between different performance events. Therefore, we analyze the data coming from the performance events and identify the points where their behavior changes. Two events are considered related if their values are changing at "approximately" the same time. We have used the Sigmoid function to compute a real-value similarity between two sets (representing two events). The resultant value of similarity is induced as a similarity or distance metric in a traditional clustering algorithm. The proposed solution is applied to 6 different software applications that are widely used in industrial systems to show how different setups including the selection of cost functions can affect the results. |
|---|---|
| AbstractList | Modern hardware and software are becoming increasingly complex due to advancements in digital and smart solutions. This is why industrial systems seek efficient use of resources to confront the challenges caused by the complex resource utilization demand. The demand and utilization of different resources show the particular execution behavior of the applications. One way to get this information is by monitoring performance events and understanding the relationship among them. However, manual analysis of this huge data is tedious and requires experts' knowledge. This paper focuses on automatically identifying the relationship between different performance events. Therefore, we analyze the data coming from the performance events and identify the points where their behavior changes. Two events are considered related if their values are changing at "approximately" the same time. We have used the Sigmoid function to compute a real-value similarity between two sets (representing two events). The resultant value of similarity is induced as a similarity or distance metric in a traditional clustering algorithm. The proposed solution is applied to 6 different software applications that are widely used in industrial systems to show how different setups including the selection of cost functions can affect the results. |
| Author | Capannini, Gabriele Behnam, Moris Imtiaz, Shamoona Carlson, Jan Jagemar, Marcus |
| Author_xml | – sequence: 1 givenname: Shamoona surname: Imtiaz fullname: Imtiaz, Shamoona email: shamoona.imtiaz@mdu.se organization: Mälardalen University,Västerås,Sweden – sequence: 2 givenname: Gabriele surname: Capannini fullname: Capannini, Gabriele email: gabriele.capannini@mdu.se organization: Mälardalen University,Västerås,Sweden – sequence: 3 givenname: Jan surname: Carlson fullname: Carlson, Jan email: jan.carlson@mdu.se organization: Mälardalen University,Västerås,Sweden – sequence: 4 givenname: Moris surname: Behnam fullname: Behnam, Moris email: moris.behnam@mdu.se organization: Mälardalen University,Västerås,Sweden – sequence: 5 givenname: Marcus surname: Jagemar fullname: Jagemar, Marcus email: marcus.jagemar@ericsson.com organization: Ericsson AB,Stockholm,Sweden |
| BookMark | eNo1j81Kw0AURkdRsNa8gWDWQuKdv5u5yxBSFQq6yL5MZm4k0iaSpIJvb0G7-lbnHL5bcTWMAwvxICGXEuipbjalNahlrkDpXIIqLCJciIQKctqC1kTSXYqVJIMZFJZuRDLPnwBw4pE0rcRjeVzGg1_6kFb747zw1A8f6dil7zx143TwQ-C0_uZhme_Edef3Myf_uxbNpm6ql2z79vxaldusl6d-RkEV7LyNiLYNoVVecaSI1rXOGcmRMZg2MGDUyoBhFzlgNEShMxz0Wtz_aXtm3n1N_cFPP7vzO_0Ll3RF7w |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ETFA54631.2023.10275660 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350339918 |
| EISSN | 1946-0759 |
| EndPage | 8 |
| ExternalDocumentID | 10275660 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i1566-9c27e8a5d665bccb2a2ed9d658b8841ede6c4bce06d32404e8dec6d499cf4ec3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:49:34 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i1566-9c27e8a5d665bccb2a2ed9d658b8841ede6c4bce06d32404e8dec6d499cf4ec3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10275660 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Sept.-12 |
| PublicationDateYYYYMMDD | 2023-09-12 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) |
| PublicationTitleAbbrev | ETFA |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001096939 |
| Score | 2.231456 |
| Snippet | Modern hardware and software are becoming increasingly complex due to advancements in digital and smart solutions. This is why industrial systems seek... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Behavioral sciences Change point detection Cost function Hardware Hierarchical clustering Manuals Measurement Performance events Performance monitoring counters Sigmoid function Similarity detection Similarity measurement Software Software algorithms |
| Title | Automatic Clustering of Performance Events |
| URI | https://ieeexplore.ieee.org/document/10275660 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwEBZt6NCpLXXpGw-dCkr9kPUYQ7DpFDx4yBas0xkCxS6J3d9fSXFqOnTopgcCPRB3n3Tfd4S8iEyhQBlTiXVErb02VPHG0Bi0imqNDTPgk02I1Uqu16ocyeqeC4OIPvgM567o__JNB4N7KrM33ImVc4vQT4XgB7LW9KBinXGVqjGGy9be8qpYOLV3BwOTdH4c_SuPijcjxcU_J3BJgomQF5Y_puaKnGB7TV4XQ995xdVw-TE4wQPbF3ZNWE5kgDB38Yz7gFRFXi3f6Zj6gG4doKIKEruDdWY4zzSATuoEjTLWXdBSshgNcmAaMOLGKeoxlAaBGwtfoGEI6Q2ZtV2LtyR03FQLW7KYg2E6S-rY-hg1NJEWmimAOxK4dW4-D-IWm-MS7_9ofyDnbjepz6LwSGb9bsAncgZf_Xa_e_ZH8g1fGIzn |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kCnpSseLbPXgSUveRzW6OpbRUrEsPe-itbCazUJBdaXf9_Sbp1uLBg7c8CORBmPmS-b4BeEpiSQmlAUup8Jmx15pJUWoWoJJ-oajkGl2yiSTL0sVCzjuyuuPCEJELPqOBLbq_fF1ja5_KzA23YuXCIPTDmPPQ39K19k8qxh2XkeyiuEztZZxPhlbv3QLBMBrsxv_KpOIMyeT0n1M4g_6ekufNf4zNORxQdQHPw7apneaqN_poreSB6fPq0pvv6QDe2EY0bvqQT8b5aMq65AdsZSEVkxiaPSxiLUSsEFVYhKSlNg6DSlMekCaBXCH5QltNPU6pJhTaABgsOWF0Cb2qrugKPMtONcAlDgRqruKwCIyXUWDpq0RxiXgNfbvO5edW3mK5W-LNH-2PcDzN32fL2Wv2dgsndmeZy6lwB71m3dI9HOFXs9qsH9zxfAPoQJAu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation%29&rft.atitle=Automatic+Clustering+of+Performance+Events&rft.au=Imtiaz%2C+Shamoona&rft.au=Capannini%2C+Gabriele&rft.au=Carlson%2C+Jan&rft.au=Behnam%2C+Moris&rft.date=2023-09-12&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FETFA54631.2023.10275660&rft.externalDocID=10275660 |