Automatic Clustering of Performance Events

Modern hardware and software are becoming increasingly complex due to advancements in digital and smart solutions. This is why industrial systems seek efficient use of resources to confront the challenges caused by the complex resource utilization demand. The demand and utilization of different reso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) S. 1 - 8
Hauptverfasser: Imtiaz, Shamoona, Capannini, Gabriele, Carlson, Jan, Behnam, Moris, Jagemar, Marcus
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 12.09.2023
Schlagworte:
ISSN:1946-0759
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Modern hardware and software are becoming increasingly complex due to advancements in digital and smart solutions. This is why industrial systems seek efficient use of resources to confront the challenges caused by the complex resource utilization demand. The demand and utilization of different resources show the particular execution behavior of the applications. One way to get this information is by monitoring performance events and understanding the relationship among them. However, manual analysis of this huge data is tedious and requires experts' knowledge. This paper focuses on automatically identifying the relationship between different performance events. Therefore, we analyze the data coming from the performance events and identify the points where their behavior changes. Two events are considered related if their values are changing at "approximately" the same time. We have used the Sigmoid function to compute a real-value similarity between two sets (representing two events). The resultant value of similarity is induced as a similarity or distance metric in a traditional clustering algorithm. The proposed solution is applied to 6 different software applications that are widely used in industrial systems to show how different setups including the selection of cost functions can affect the results.
AbstractList Modern hardware and software are becoming increasingly complex due to advancements in digital and smart solutions. This is why industrial systems seek efficient use of resources to confront the challenges caused by the complex resource utilization demand. The demand and utilization of different resources show the particular execution behavior of the applications. One way to get this information is by monitoring performance events and understanding the relationship among them. However, manual analysis of this huge data is tedious and requires experts' knowledge. This paper focuses on automatically identifying the relationship between different performance events. Therefore, we analyze the data coming from the performance events and identify the points where their behavior changes. Two events are considered related if their values are changing at "approximately" the same time. We have used the Sigmoid function to compute a real-value similarity between two sets (representing two events). The resultant value of similarity is induced as a similarity or distance metric in a traditional clustering algorithm. The proposed solution is applied to 6 different software applications that are widely used in industrial systems to show how different setups including the selection of cost functions can affect the results.
Author Capannini, Gabriele
Behnam, Moris
Imtiaz, Shamoona
Carlson, Jan
Jagemar, Marcus
Author_xml – sequence: 1
  givenname: Shamoona
  surname: Imtiaz
  fullname: Imtiaz, Shamoona
  email: shamoona.imtiaz@mdu.se
  organization: Mälardalen University,Västerås,Sweden
– sequence: 2
  givenname: Gabriele
  surname: Capannini
  fullname: Capannini, Gabriele
  email: gabriele.capannini@mdu.se
  organization: Mälardalen University,Västerås,Sweden
– sequence: 3
  givenname: Jan
  surname: Carlson
  fullname: Carlson, Jan
  email: jan.carlson@mdu.se
  organization: Mälardalen University,Västerås,Sweden
– sequence: 4
  givenname: Moris
  surname: Behnam
  fullname: Behnam, Moris
  email: moris.behnam@mdu.se
  organization: Mälardalen University,Västerås,Sweden
– sequence: 5
  givenname: Marcus
  surname: Jagemar
  fullname: Jagemar, Marcus
  email: marcus.jagemar@ericsson.com
  organization: Ericsson AB,Stockholm,Sweden
BookMark eNo1j81Kw0AURkdRsNa8gWDWQuKdv5u5yxBSFQq6yL5MZm4k0iaSpIJvb0G7-lbnHL5bcTWMAwvxICGXEuipbjalNahlrkDpXIIqLCJciIQKctqC1kTSXYqVJIMZFJZuRDLPnwBw4pE0rcRjeVzGg1_6kFb747zw1A8f6dil7zx143TwQ-C0_uZhme_Edef3Myf_uxbNpm6ql2z79vxaldusl6d-RkEV7LyNiLYNoVVecaSI1rXOGcmRMZg2MGDUyoBhFzlgNEShMxz0Wtz_aXtm3n1N_cFPP7vzO_0Ll3RF7w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ETFA54631.2023.10275660
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350339918
EISSN 1946-0759
EndPage 8
ExternalDocumentID 10275660
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i1566-9c27e8a5d665bccb2a2ed9d658b8841ede6c4bce06d32404e8dec6d499cf4ec3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:49:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1566-9c27e8a5d665bccb2a2ed9d658b8841ede6c4bce06d32404e8dec6d499cf4ec3
PageCount 8
ParticipantIDs ieee_primary_10275660
PublicationCentury 2000
PublicationDate 2023-Sept.-12
PublicationDateYYYYMMDD 2023-09-12
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-12
  day: 12
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation)
PublicationTitleAbbrev ETFA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096939
Score 2.231456
Snippet Modern hardware and software are becoming increasingly complex due to advancements in digital and smart solutions. This is why industrial systems seek...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Behavioral sciences
Change point detection
Cost function
Hardware
Hierarchical clustering
Manuals
Measurement
Performance events
Performance monitoring counters
Sigmoid function
Similarity detection
Similarity measurement
Software
Software algorithms
Title Automatic Clustering of Performance Events
URI https://ieeexplore.ieee.org/document/10275660
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPHhSseKbPXgSttokm8exlF08SOmhh95KHhMoSFfaXX-_k3Tr4sGDtzwI5EGY-ZL5viHkCdBJ9oVQOWMUAYrmNtcOrzs3gXplAtrklLXkXc5marnU846snrgwAJCCz2AUi-kv39eujU9leMOjWLlAhH4spdiTtfoHFXTGNdNdDBfWXspFNYlq7xEGUjY6jP6VRyWZkersnxM4J8OekJfNf0zNBTmCzSV5nrRNnRRXs-lHGwUPsC-rQzbvyQBZGeMZd0OyqMrF9C3vUh_k6wiocL-oBGUKL0RhnbPUUPDao7tgleJj8CActw5ehY-KehyUByc8whcXODh2RQabegPXJKNWMh2CYcbjiLEzjIINoRBcGCVluCHDuM7V517cYnVY4u0f7XfkNO5mnrIo3JNBs23hgZy4r2a92z6mI_kGqq-MxA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBT2pWPHtHjwJW9skm02OpXSpuJYe9tBbyWMCBelK2_X3O0lbiwcP3vIgkAdh5kvm-4aQJ0An2WVCpoxRBCiKm1RZvO5ce-qk9miTY9aSMh-P5XSqJluyeuTCAEAMPoNOKMa_fFfbJjyV4Q0PYuUCEfphxjntbuha-ycVdMcVU9soLqy9DKuiH_TeAxCkrLMb_yuTSjQkxek_p3BG2ntKXjL5MTbn5AAWF-S536zrqLmaDD6aIHmAfUntk8meDpAMQ0Tjqk2qYlgNRuk2-UE6D5AKd4zmIHXmhMiMtYZqCk45dBiMlLwHDoTlxkJXuKCpx0E6sMIhgLGeg2WXpLWoF3BFEmpyprzXTDsc0bOaUTDeZ4ILLfPcX5N2WOfscyNvMdst8eaP9kdyPKrey1n5On67JSdhZ9OYU-GOtNbLBu7Jkf1az1fLh3g83zAEkAs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation%29&rft.atitle=Automatic+Clustering+of+Performance+Events&rft.au=Imtiaz%2C+Shamoona&rft.au=Capannini%2C+Gabriele&rft.au=Carlson%2C+Jan&rft.au=Behnam%2C+Moris&rft.date=2023-09-12&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FETFA54631.2023.10275660&rft.externalDocID=10275660