S1 attractor bifurcation analysis for a three-species cooperating model

In this paper, the dynamic bifurcation of the three-species cooperating model is considered. It worth noting that the main theory of this paper is the Center manifold reduction and attractor bifurcation theory, which is developed by Ma [1,2]. The main work of this paper shows that if the algebraic m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. Conference series Ročník 2282; číslo 1; s. 012014 - 12020
Hlavní autori: Li, Junyan, Wu, Ruili
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 01.06.2022
Predmet:
ISSN:1742-6588, 1742-6596
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, the dynamic bifurcation of the three-species cooperating model is considered. It worth noting that the main theory of this paper is the Center manifold reduction and attractor bifurcation theory, which is developed by Ma [1,2]. The main work of this paper shows that if the algebraic multiplicity of the first eigenvalue is 2, there exists an S1 attractor bifurcation, and the number of its singular points can only be eight. Besides, we show that the simplified governing equations bifurcate to an S1 attractor, when the Control parameter λ crosses a critical value λ0.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2282/1/012014