Recognizing indoor scenes

Indoor scene recognition is a challenging open problem in high level vision. Most scene recognition models that work well for outdoor scenes perform poorly in the indoor domain. The main difficulty is that while some indoor scenes (e.g. corridors) can be well characterized by global spatial properti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2009 IEEE Conference on Computer Vision and Pattern Recognition s. 413 - 420
Hlavní autoři: Quattoni, Ariadna, Torralba, Antonio
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2009
Témata:
ISBN:1424439922, 9781424439928
ISSN:1063-6919, 1063-6919
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Indoor scene recognition is a challenging open problem in high level vision. Most scene recognition models that work well for outdoor scenes perform poorly in the indoor domain. The main difficulty is that while some indoor scenes (e.g. corridors) can be well characterized by global spatial properties, others (e.g, bookstores) are better characterized by the objects they contain. More generally, to address the indoor scenes recognition problem we need a model that can exploit local and global discriminative information. In this paper we propose a prototype based model that can successfully combine both sources of information. To test our approach we created a dataset of 67 indoor scenes categories (the largest available) covering a wide range of domains. The results show that our approach can significantly outperform a state of the art classifier for the task.
ISBN:1424439922
9781424439928
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2009.5206537