Advancing SSVEP-BCI Decoding: Cross-Subject Transfer Learning and Short Calibrated Approach with ELM-AE

The Steady-State Visually Evoked Potential (SSVEP) is a robust paradigm for developing a high-speed Brain-Computer Interface (BCI). However, one of the challenges of BCI is to face the variability of EEG signals between subjects to reduce or eliminate the time calibration process for a new subject (...

Full description

Saved in:
Bibliographic Details
Published in:2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2024; pp. 1 - 5
Main Authors: Flores, Christian, Casas, Paolo, de Carvalho, Sarah Negreiros, Attux, Romis
Format: Conference Proceeding Journal Article
Language:English
Published: United States IEEE 01.07.2024
Subjects:
ISSN:2694-0604, 2694-0604
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Steady-State Visually Evoked Potential (SSVEP) is a robust paradigm for developing a high-speed Brain-Computer Interface (BCI). However, one of the challenges of BCI is to face the variability of EEG signals between subjects to reduce or eliminate the time calibration process for a new subject (target subject). Some approaches propose linearly transforming; however, it limits the ability to capture complex and nonlinear relationships in data. This study presents a method for performing a Nonlinear Transformation (NLT) using an Extreme Learning Machine Autoencoder (ELM-AE) on SSVEP trials. To improve the NLT, it maps each trial from the existing subjects (source subjects) to one or a few templates from the target subject. This approach can enhance cross-subject recognition classification, reducing the calibration time for the target subject. Our results reported that, for one template, NLT and LST achieved 84.23% and 82.19% average recognition accuracy, respectively. Thus, our results reported that the recognition accuracy of NLT outperformed LST for all template sizes across all 35 subjects. These results demonstrated the feasibility of the NLT using one or a few templates for rapid calibration for the target subject.
AbstractList The Steady-State Visually Evoked Potential (SSVEP) is a robust paradigm for developing a high-speed Brain-Computer Interface (BCI). However, one of the challenges of BCI is to face the variability of EEG signals between subjects to reduce or eliminate the time calibration process for a new subject (target subject). Some approaches propose linearly transforming; however, it limits the ability to capture complex and nonlinear relationships in data. This study presents a method for performing a Nonlinear Transformation (NLT) using an Extreme Learning Machine Autoencoder (ELM-AE) on SSVEP trials. To improve the NLT, it maps each trial from the existing subjects (source subjects) to one or a few templates from the target subject. This approach can enhance cross-subject recognition classification, reducing the calibration time for the target subject. Our results reported that, for one template, NLT and LST achieved 84.23% and 82.19% average recognition accuracy, respectively. Thus, our results reported that the recognition accuracy of NLT outperformed LST for all template sizes across all 35 subjects. These results demonstrated the feasibility of the NLT using one or a few templates for rapid calibration for the target subject.
The Steady-State Visually Evoked Potential (SSVEP) is a robust paradigm for developing a high-speed Brain-Computer Interface (BCI). However, one of the challenges of BCI is to face the variability of EEG signals between subjects to reduce or eliminate the time calibration process for a new subject (target subject). Some approaches propose linearly transforming; however, it limits the ability to capture complex and nonlinear relationships in data. This study presents a method for performing a Nonlinear Transformation (NLT) using an Extreme Learning Machine Autoencoder (ELM-AE) on SSVEP trials. To improve the NLT, it maps each trial from the existing subjects (source subjects) to one or a few templates from the target subject. This approach can enhance cross-subject recognition classification, reducing the calibration time for the target subject. Our results reported that, for one template, NLT and LST achieved 84.23% and 82.19% average recognition accuracy, respectively. Thus, our results reported that the recognition accuracy of NLT outperformed LST for all template sizes across all 35 subjects. These results demonstrated the feasibility of the NLT using one or a few templates for rapid calibration for the target subject.The Steady-State Visually Evoked Potential (SSVEP) is a robust paradigm for developing a high-speed Brain-Computer Interface (BCI). However, one of the challenges of BCI is to face the variability of EEG signals between subjects to reduce or eliminate the time calibration process for a new subject (target subject). Some approaches propose linearly transforming; however, it limits the ability to capture complex and nonlinear relationships in data. This study presents a method for performing a Nonlinear Transformation (NLT) using an Extreme Learning Machine Autoencoder (ELM-AE) on SSVEP trials. To improve the NLT, it maps each trial from the existing subjects (source subjects) to one or a few templates from the target subject. This approach can enhance cross-subject recognition classification, reducing the calibration time for the target subject. Our results reported that, for one template, NLT and LST achieved 84.23% and 82.19% average recognition accuracy, respectively. Thus, our results reported that the recognition accuracy of NLT outperformed LST for all template sizes across all 35 subjects. These results demonstrated the feasibility of the NLT using one or a few templates for rapid calibration for the target subject.
Author de Carvalho, Sarah Negreiros
Attux, Romis
Casas, Paolo
Flores, Christian
Author_xml – sequence: 1
  givenname: Christian
  surname: Flores
  fullname: Flores, Christian
  email: cflores@utec.edu.pe
  organization: Universidad de Ingeniería y Tecnología,Dept. of Electrical Engineering,Lima,Peru
– sequence: 2
  givenname: Paolo
  surname: Casas
  fullname: Casas, Paolo
  email: paolo.casas@utec.edu.pe
  organization: Universidad de Ingeniería y Tecnología,Dept. of Electrical Engineering,Lima,Peru
– sequence: 3
  givenname: Sarah Negreiros
  surname: de Carvalho
  fullname: de Carvalho, Sarah Negreiros
  email: sarahnc@ita.br
  organization: Aeronautics Institute of Technology,Division of Electronics Engineering,São José dos Campos,Brazil
– sequence: 4
  givenname: Romis
  surname: Attux
  fullname: Attux, Romis
  email: attux@unicamp.br
  organization: University of Campinas,DCA/FEEC,Campinas,Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40039415$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAQRQ0qggL9AwResknxM86wa0N4SEUgtbCtHGdCg9qk2CmIvyeogNjMjOaeuRrdQ9KrmxoJOeNsyDmDi-x-nGrJWTIUTKghZyYRRsIOGYCBRGomDVcAu6QvYlARi5nq_ZsPyCCEKmdaaqVByH1yoBiToLjuk5dR8W5rV9UvdDp9zh6jcXpHr9A1Rbe6pKlvQoimm_wVXUtn3tahRE8naH39fWPrgk4XjW9papdV7m2LBR2t176xbkE_qnZBs8l9NMqOyV5plwEHP_2IPF1ns_Q2mjzc3KWjSVRxZdpIi1hY05U8NzoHB8KZpEDHgZcgmUswBqFNYmMldakSiHmng3GojStKI4_I-da3e-Ftg6Gdr6rgcLm0NTabMJfcKAZglOzQ0x90k6-wmK99tbL-c_4bTgecbIEKEf_k3_jlF2zNdA4
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IH
CBEJK
RIE
RIO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/EMBC53108.2024.10782739
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISBN 9798350371499
EISSN 2694-0604
EndPage 5
ExternalDocumentID 40039415
10782739
Genre orig-research
Journal Article
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-i147t-5262a7262bb75b9c92c78dec191f930c8e692578a6435f4896178d97ce57cdf73
IEDL.DBID RIE
ISSN 2694-0604
IngestDate Thu Oct 02 18:03:45 EDT 2025
Mon May 12 02:38:35 EDT 2025
Wed Aug 27 02:32:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i147t-5262a7262bb75b9c92c78dec191f930c8e692578a6435f4896178d97ce57cdf73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 40039415
PQID 3174099743
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_3174099743
pubmed_primary_40039415
ieee_primary_10782739
PublicationCentury 2000
PublicationDate 2024-Jul
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
PublicationTitleAbbrev EMBC
PublicationTitleAlternate Annu Int Conf IEEE Eng Med Biol Soc
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib053545923
ssib042469959
ssib061542107
Score 2.2606943
Snippet The Steady-State Visually Evoked Potential (SSVEP) is a robust paradigm for developing a high-speed Brain-Computer Interface (BCI). However, one of the...
SourceID proquest
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Adult
Algorithms
Brain-Computer Interface
Brain-Computer Interfaces
Calibration
Electroencephalography
Electroencephalography - methods
ELM-AE
Engineering in medicine and biology
Evoked Potentials, Visual - physiology
Extreme learning machines
Face recognition
Humans
Machine Learning
Male
Nonlinear Transformation
Signal Processing, Computer-Assisted
SSVEP
Steady-state
Target recognition
Transfer learning
Title Advancing SSVEP-BCI Decoding: Cross-Subject Transfer Learning and Short Calibrated Approach with ELM-AE
URI https://ieeexplore.ieee.org/document/10782739
https://www.ncbi.nlm.nih.gov/pubmed/40039415
https://www.proquest.com/docview/3174099743
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YxIETIAaMxxQkrhldmzYJt210AolNkwZot6lN3LFLh_bg92N33eCyA5eoqtqocpz6s-PPZuxeydBp8EGAyjwhIxeKFJGDiLJAO23Rwqe2aDahBgM9HpthSVYvuDAAUCSfQZMui7N8N7drCpXhDkd7pgJTYRWlog1Za6s80kdH70-hlDBAbIDopczpannmIe53uqhyHmV0-bK5na3sq7IfYhampnf8z488YbVf0h4f7szRKTuA_IxNi67JFm_w0egjHopO94U_octJzzzyLtlIgT8Pisbwwm7hVLwsujrlSe746BMROicOV0plJRxvl2XIOcVwefzaF-24xt578Vv3WZS9FcSsJdUK_c_ITxQOaarC1FjjW6UdWHTfMhN4VkNkaDcniFjCTGpDVEJnlIVQWZep4JxV83kOl4yDB5lNUMJgyd5rI8FkmXUtn7piKV1nNZLS5GtTPmOyFVCd3W0FPkGdpoOKJIf5ejlBTCOJ0SuDOrvYrMTubUlsYkQdV3tmvWZHtLqbjNobVl0t1nDLDu33arZcNFBxxhrHwbDfKNTnBzYnv4c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0omuhJjaj4uSZeF0u7ZXe9AZZoBEKCGm5NuztFL8UI-PudKUW9cPDSNE27aWanfW92580wdqNk6DT4IEBlnpBNF4oUmYNoZoF22iLCp7ZoNqEGAz0em2EpVi-0MABQJJ9BnU6LvXw3tQtaKsMvHPFMBWaTbYVS-t5SrrVyH-ljqPenVEoYIDtA_lJmdTU8cxv12x10Oo9yunxZX41XdlZZTzILsOnu_fM191n1V7bHhz-AdMA2ID9kk6JvssULfDR6jYai3Xnk9xh00j13vEMoKfD3QesxvEAuHIqXZVcnPMkdH70hR-ek4kqpsITjrbIQOadVXB71-qIVVdlLN3ruPIiyu4J4b0g1xwi06ScKD2mqwtRY41ulHVgM4DITeFZD09D3nCBnCTOpDYkJnVEWQmVdpoIjVsmnOZwwDh5kNkELgyXE10aCyTLrGj71xVK6xqpkpfhjWUAjXhmoxq5XBo_Rq2mrIslhupjFyGokaXplUGPHy5n4eVqSnhh5x-maUa_YzsNzvxf3HgdPZ2yXZnqZX3vOKvPPBVywbfs1f599Xhbu8w1TUcDa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+46th+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology+Society+%28EMBC%29&rft.atitle=Advancing+SSVEP-BCI+Decoding%3A+Cross-Subject+Transfer+Learning+and+Short+Calibrated+Approach+with+ELM-AE&rft.au=Flores%2C+Christian&rft.au=Casas%2C+Paolo&rft.au=de+Carvalho%2C+Sarah+Negreiros&rft.au=Attux%2C+Romis&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=2694-0604&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FEMBC53108.2024.10782739&rft.externalDocID=10782739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-0604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-0604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-0604&client=summon