A meshfree method with domain decomposition for Helmholtz boundary value problems

In the framework of meshfree methods, we address the numerical solution of boundary value problems (BVP) for the non-homogeneous modified Helmholtz partial differential equation (PDE). In particular, the unknown solution of the BVP is calculated in two steps. First, a particular solution of the PDE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2020 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA) S. 139 - 144
1. Verfasser: Valtchev, Svilen S.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 11.11.2020
IEEE Canada
Schlagworte:
ISBN:1728188407, 1728181135, 9781728188409, 9781728181134
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the framework of meshfree methods, we address the numerical solution of boundary value problems (BVP) for the non-homogeneous modified Helmholtz partial differential equation (PDE). In particular, the unknown solution of the BVP is calculated in two steps. First, a particular solution of the PDE is approximated by superposition of plane wave functions with different wavenumbers and directions of propagation. Then, the corresponding homogeneous BVP is solved, for the homogeneous part of the solution, using the classical method of fundamental solutions (MFS). The combination of these two meshfree techniques shows excellent numerical results for non-homogeneous BVPs posed in simple geometries and when the source term of the PDE is sufficiently regular. However, for more complex domains or when the source term is piecewise defined, the MFS fails to converge. We overcome this problem by coupling the MFS with Lions non-overlapping domain decomposition method. The proposed technique is tested for the modified Helmholtz PDE with a discontinuous source term, posed in an L-shaped domain.
AbstractList In the framework of meshfree methods, we address the numerical solution of boundary value problems (BVP) for the non-homogeneous modified Helmholtz partial differential equation (PDE). In particular, the unknown solution of the BVP is calculated in two steps. First, a particular solution of the PDE is approximated by superposition of plane wave functions with different wavenumbers and directions of propagation. Then, the corresponding homogeneous BVP is solved, for the homogeneous part of the solution, using the classical method of fundamental solutions (MFS). The combination of these two meshfree techniques shows excellent numerical results for non-homogeneous BVPs posed in simple geometries and when the source term of the PDE is sufficiently regular. However, for more complex domains or when the source term is piecewise defined, the MFS fails to converge. We overcome this problem by coupling the MFS with Lions non-overlapping domain decomposition method. The proposed technique is tested for the modified Helmholtz PDE with a discontinuous source term, posed in an L-shaped domain.
Author Valtchev, Svilen S.
Author_xml – sequence: 1
  givenname: Svilen S.
  surname: Valtchev
  fullname: Valtchev, Svilen S.
  email: ssv@math.ist.utl.pt
  organization: Instituto Superior Técnico, University of Lisbon, Portugal & ESTG,Polytechnic of Leiria,CEMAT,Portugal
BookMark eNpNkMFLwzAYxSMq6Ob-Ag8GPK9-ado0OY6hTtgQ0Z1Lkn6hgbYpTTfRv97CdvD03oMfj8ebkasudEjIA4OEMVBPn_vdbpWD4FmSQgqJSuUUxAWZsSKVTMoMisv_4YYsYvQGshSUyiG_JR8r2mKs3YA4mbEOFf32Y02r0Grf0QptaPsQ_ehDR10Y6Aabtg7N-EtNOHSVHn7oUTcHpP0QTINtvCPXTjcRF2edk_3L89d6s9y-v76tV9ulZ5kYlwaY5qm1zgmdpw5AGlRSolOFctNcMJlDxbgTLEdhq0pbJ4QuTCEsZkbwOXk89Q5W674c8OjjqGPJIAMoZcm4YHyi7k-UR8SyH3w7LS7PR_E_6JpgFQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
RCLKO
DOI 10.1109/SUMMA50634.2020.9280636
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
RCAAP open access repository
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
DissertationSchool Repositório IC-Online
EISBN 1728188407
9781728188409
EndPage 144
ExternalDocumentID 10400_8_13613
9280636
Genre orig-research
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  funderid: 10.13039/501100001871
– fundername: Instituto Superior Técnico
  funderid: 10.13039/501100007225
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
6IF
6IN
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
IEGSK
OCL
RCLKO
ID FETCH-LOGICAL-i146t-b01a32ccff6a52f008be988ef979f8180b4fe913f615e6cddacf66a7b76ce4b63
IEDL.DBID RIE
ISBN 1728188407
1728181135
9781728188409
9781728181134
IngestDate Sun Nov 02 15:27:18 EST 2025
Thu Jun 29 18:38:23 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i146t-b01a32ccff6a52f008be988ef979f8180b4fe913f615e6cddacf66a7b76ce4b63
ORCID 0000-0002-3474-2788
OpenAccessLink http://hdl.handle.net/10400.8/13613
PageCount 6
ParticipantIDs rcaap_revistas_10400_8_13613
ieee_primary_9280636
PublicationCentury 2000
PublicationDate 2020-Nov.-11
2020-11
PublicationDateYYYYMMDD 2020-11-11
2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-11
  day: 11
PublicationDecade 2020
PublicationTitle 2020 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA)
PublicationTitleAbbrev SUMMA
PublicationYear 2020
Publisher IEEE
IEEE Canada
Publisher_xml – name: IEEE
– name: IEEE Canada
SSID ssib042099505
Score 1.7401128
Snippet In the framework of meshfree methods, we address the numerical solution of boundary value problems (BVP) for the non-homogeneous modified Helmholtz partial...
SourceID rcaap
ieee
SourceType Publisher
StartPage 139
SubjectTerms domain decomposition
Energy efficiency
Geometry
Iterative methods
L-shaped domain
Mathematical model
meshfree method
method of fundamental solutions
modified Helmholtz equation
non-homogeneous PDE
Numerical models
Partial differential equations
plane wave functions
Wave functions
Title A meshfree method with domain decomposition for Helmholtz boundary value problems
URI https://ieeexplore.ieee.org/document/9280636
http://hdl.handle.net/10400.8/13613
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioEJUIsoFOSBkbRxnPpjrBAVU1UkkLpF_jiLDv1Q0iLBr-ecRoWBhS2DI0tn-d3z-Z0fIfeSBYe0XScmUybJDXOJzYxNtMgs7j3lMutrswk5m6nFQs9b5OHYCwMAtfgMhvGzvsv3G7ePpbKRjteAXLRJW0p56NVqJFss1aMIQ5MxDoilkiwdNqMb2xQkn6UzZvsre0zP_jfvOen9tOHR-THBXJAWrLvkZUJXUL2HEoAe7J9prKVSv1nhIZ96iCLxRolFkZFSTCwrhLjdF7W1hVL5SeML30AbL5mqR96mT6-Pz0nji5AsEdd2iU2Z4ZlzIQgzzgJmcQtaKQha6hB7t20eQDMekK2AcN4bF4QwEoPvILeCX5LOerOGK0IlpByMVBqJUB6sR2xUngfDx8alVsg-6cZwFNvD0xdFE4k-GdTBLKIUGVlsVbAIBoUqGEd-cP33XzfkNC5M7ORjbEA6u3IPt-TEfeyWVXlXL-c3QAOjgw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zCnpS2cTp1Bw82q1J2jQ5DlEmzjFhwm4lSV9wh_2g7QT96026Mj148dZDSuCFfO_Ly_fyIXSbEGscbZeBokIFkSIm0FTpQHKq3d4ThuqsMptIxmMxm8lJA93temEAoBKfQc9_Vnf52cpsfKmsL_01ION7aD-OIkq23Vq1aIuEsu-BaBC7Ib5YQsNePb42TnH0MzdKrX_lj8fj_818gto_jXh4sksxp6gByxZ6HeAFFO82B8BbA2jsq6k4Wy3cMR9n4GXitRYLO06KXWpZOJArv7CuTJTyT-zf-AZcu8kUbfT2-DC9Hwa1M0Iwd8hWBjokilFjrOUqptblcQ1SCLAykdZ3b-vIgiTMOr4C3GSZMpZzlbjwG4g0Z2eouVwt4RzhBEIGKhHSUaHI6syho8iYVSxWJtQ86aCWD0e63j5-kdaR6KBuFczUi5Edjy1S4uEgFSlhjiFc_P3XDTocTl9G6ehp_HyJjvwi-b4-QrqoWeYbuEIH5qOcF_l1tbTf7ZCmyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+2nd+International+Conference+on+Control+Systems%2C+Mathematical+Modeling%2C+Automation+and+Energy+Efficiency+%28SUMMA%29&rft.atitle=A+meshfree+method+with+domain+decomposition+for+Helmholtz+boundary+value+problems&rft.au=Valtchev%2C+Svilen+S.&rft.date=2020-11-11&rft.pub=IEEE&rft.spage=139&rft.epage=144&rft_id=info:doi/10.1109%2FSUMMA50634.2020.9280636&rft.externalDocID=9280636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728188409/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728188409/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728188409/sc.gif&client=summon&freeimage=true