A meshfree method with domain decomposition for Helmholtz boundary value problems
In the framework of meshfree methods, we address the numerical solution of boundary value problems (BVP) for the non-homogeneous modified Helmholtz partial differential equation (PDE). In particular, the unknown solution of the BVP is calculated in two steps. First, a particular solution of the PDE...
Gespeichert in:
| Veröffentlicht in: | 2020 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA) S. 139 - 144 |
|---|---|
| 1. Verfasser: | |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
11.11.2020
IEEE Canada |
| Schlagworte: | |
| ISBN: | 1728188407, 1728181135, 9781728188409, 9781728181134 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the framework of meshfree methods, we address the numerical solution of boundary value problems (BVP) for the non-homogeneous modified Helmholtz partial differential equation (PDE). In particular, the unknown solution of the BVP is calculated in two steps. First, a particular solution of the PDE is approximated by superposition of plane wave functions with different wavenumbers and directions of propagation. Then, the corresponding homogeneous BVP is solved, for the homogeneous part of the solution, using the classical method of fundamental solutions (MFS). The combination of these two meshfree techniques shows excellent numerical results for non-homogeneous BVPs posed in simple geometries and when the source term of the PDE is sufficiently regular. However, for more complex domains or when the source term is piecewise defined, the MFS fails to converge. We overcome this problem by coupling the MFS with Lions non-overlapping domain decomposition method. The proposed technique is tested for the modified Helmholtz PDE with a discontinuous source term, posed in an L-shaped domain. |
|---|---|
| AbstractList | In the framework of meshfree methods, we address the numerical solution of boundary value problems (BVP) for the non-homogeneous modified Helmholtz partial differential equation (PDE). In particular, the unknown solution of the BVP is calculated in two steps. First, a particular solution of the PDE is approximated by superposition of plane wave functions with different wavenumbers and directions of propagation. Then, the corresponding homogeneous BVP is solved, for the homogeneous part of the solution, using the classical method of fundamental solutions (MFS). The combination of these two meshfree techniques shows excellent numerical results for non-homogeneous BVPs posed in simple geometries and when the source term of the PDE is sufficiently regular. However, for more complex domains or when the source term is piecewise defined, the MFS fails to converge. We overcome this problem by coupling the MFS with Lions non-overlapping domain decomposition method. The proposed technique is tested for the modified Helmholtz PDE with a discontinuous source term, posed in an L-shaped domain. |
| Author | Valtchev, Svilen S. |
| Author_xml | – sequence: 1 givenname: Svilen S. surname: Valtchev fullname: Valtchev, Svilen S. email: ssv@math.ist.utl.pt organization: Instituto Superior Técnico, University of Lisbon, Portugal & ESTG,Polytechnic of Leiria,CEMAT,Portugal |
| BookMark | eNpNkMFLwzAYxSMq6Ob-Ag8GPK9-ado0OY6hTtgQ0Z1Lkn6hgbYpTTfRv97CdvD03oMfj8ebkasudEjIA4OEMVBPn_vdbpWD4FmSQgqJSuUUxAWZsSKVTMoMisv_4YYsYvQGshSUyiG_JR8r2mKs3YA4mbEOFf32Y02r0Grf0QptaPsQ_ehDR10Y6Aabtg7N-EtNOHSVHn7oUTcHpP0QTINtvCPXTjcRF2edk_3L89d6s9y-v76tV9ulZ5kYlwaY5qm1zgmdpw5AGlRSolOFctNcMJlDxbgTLEdhq0pbJ4QuTCEsZkbwOXk89Q5W674c8OjjqGPJIAMoZcm4YHyi7k-UR8SyH3w7LS7PR_E_6JpgFQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL RCLKO |
| DOI | 10.1109/SUMMA50634.2020.9280636 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present RCAAP open access repository |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| DissertationSchool | Repositório IC-Online |
| EISBN | 1728188407 9781728188409 |
| EndPage | 144 |
| ExternalDocumentID | 10400_8_13613 9280636 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Fundação para a Ciência e a Tecnologia funderid: 10.13039/501100001871 – fundername: Instituto Superior Técnico funderid: 10.13039/501100007225 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL 6IF 6IN AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ IEGSK OCL RCLKO |
| ID | FETCH-LOGICAL-i146t-b01a32ccff6a52f008be988ef979f8180b4fe913f615e6cddacf66a7b76ce4b63 |
| IEDL.DBID | RIE |
| ISBN | 1728188407 1728181135 9781728188409 9781728181134 |
| IngestDate | Sun Nov 02 15:27:18 EST 2025 Thu Jun 29 18:38:23 EDT 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i146t-b01a32ccff6a52f008be988ef979f8180b4fe913f615e6cddacf66a7b76ce4b63 |
| ORCID | 0000-0002-3474-2788 |
| OpenAccessLink | http://hdl.handle.net/10400.8/13613 |
| PageCount | 6 |
| ParticipantIDs | rcaap_revistas_10400_8_13613 ieee_primary_9280636 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Nov.-11 2020-11 |
| PublicationDateYYYYMMDD | 2020-11-11 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-Nov.-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | 2020 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA) |
| PublicationTitleAbbrev | SUMMA |
| PublicationYear | 2020 |
| Publisher | IEEE IEEE Canada |
| Publisher_xml | – name: IEEE – name: IEEE Canada |
| SSID | ssib042099505 |
| Score | 1.7401128 |
| Snippet | In the framework of meshfree methods, we address the numerical solution of boundary value problems (BVP) for the non-homogeneous modified Helmholtz partial... |
| SourceID | rcaap ieee |
| SourceType | Publisher |
| StartPage | 139 |
| SubjectTerms | domain decomposition Energy efficiency Geometry Iterative methods L-shaped domain Mathematical model meshfree method method of fundamental solutions modified Helmholtz equation non-homogeneous PDE Numerical models Partial differential equations plane wave functions Wave functions |
| Title | A meshfree method with domain decomposition for Helmholtz boundary value problems |
| URI | https://ieeexplore.ieee.org/document/9280636 http://hdl.handle.net/10400.8/13613 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELXaioEJUIsoFOSBkbRxnPpjrBAVU1UkkLpF_jiLDv1Q0iLBr-ecRoWBhS2DI0tn-d3z-Z0fIfeSBYe0XScmUybJDXOJzYxNtMgs7j3lMutrswk5m6nFQs9b5OHYCwMAtfgMhvGzvsv3G7ePpbKRjteAXLRJW0p56NVqJFss1aMIQ5MxDoilkiwdNqMb2xQkn6UzZvsre0zP_jfvOen9tOHR-THBXJAWrLvkZUJXUL2HEoAe7J9prKVSv1nhIZ96iCLxRolFkZFSTCwrhLjdF7W1hVL5SeML30AbL5mqR96mT6-Pz0nji5AsEdd2iU2Z4ZlzIQgzzgJmcQtaKQha6hB7t20eQDMekK2AcN4bF4QwEoPvILeCX5LOerOGK0IlpByMVBqJUB6sR2xUngfDx8alVsg-6cZwFNvD0xdFE4k-GdTBLKIUGVlsVbAIBoUqGEd-cP33XzfkNC5M7ORjbEA6u3IPt-TEfeyWVXlXL-c3QAOjgw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zCnpS2cTp1Bw82q1J2jQ5DlEmzjFhwm4lSV9wh_2g7QT96026Mj148dZDSuCFfO_Ly_fyIXSbEGscbZeBokIFkSIm0FTpQHKq3d4ThuqsMptIxmMxm8lJA93temEAoBKfQc9_Vnf52cpsfKmsL_01ION7aD-OIkq23Vq1aIuEsu-BaBC7Ib5YQsNePb42TnH0MzdKrX_lj8fj_818gto_jXh4sksxp6gByxZ6HeAFFO82B8BbA2jsq6k4Wy3cMR9n4GXitRYLO06KXWpZOJArv7CuTJTyT-zf-AZcu8kUbfT2-DC9Hwa1M0Iwd8hWBjokilFjrOUqptblcQ1SCLAykdZ3b-vIgiTMOr4C3GSZMpZzlbjwG4g0Z2eouVwt4RzhBEIGKhHSUaHI6syho8iYVSxWJtQ86aCWD0e63j5-kdaR6KBuFczUi5Edjy1S4uEgFSlhjiFc_P3XDTocTl9G6ehp_HyJjvwi-b4-QrqoWeYbuEIH5qOcF_l1tbTf7ZCmyg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+2nd+International+Conference+on+Control+Systems%2C+Mathematical+Modeling%2C+Automation+and+Energy+Efficiency+%28SUMMA%29&rft.atitle=A+meshfree+method+with+domain+decomposition+for+Helmholtz+boundary+value+problems&rft.au=Valtchev%2C+Svilen+S.&rft.date=2020-11-11&rft.pub=IEEE&rft.spage=139&rft.epage=144&rft_id=info:doi/10.1109%2FSUMMA50634.2020.9280636&rft.externalDocID=9280636 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728188409/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728188409/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781728188409/sc.gif&client=summon&freeimage=true |

